Blame view

egs/librispeech/s5/local/online/run_nnet2.sh 6.61 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  #!/bin/bash
  
  # example script for online-nnet2 system training and decoding,
  # based on the one for fisher-English.
  
  # note: run_nnet2_ms.sh gives better results, but it's slower to train.
  
  . ./cmd.sh
  
  
  stage=0
  train_stage=-10
  use_gpu=true
  dir=exp/nnet2_online/nnet_a
  
  set -e
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
    # the _a is in case I want to change the parameters.
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    num_threads=16
    minibatch_size=128
    parallel_opts="--num-threads $num_threads"
  fi
  
  local/online/run_nnet2_common.sh --stage $stage
  
  if [ $stage -le 7 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
    # The size of the system is kept rather smaller than the run_7a_960.sh system:
    # this is because we want it to be small enough that we could plausibly run it
    # in real-time.
    steps/nnet2/train_pnorm_simple2.sh --stage $train_stage \
      --num-epochs 8 --num-jobs-nnet 6 \
      --splice-width 7 --feat-type raw \
      --online-ivector-dir exp/nnet2_online/ivectors_train_960_hires \
      --cmvn-opts "--norm-means=false --norm-vars=false" \
      --num-threads "$num_threads" \
      --minibatch-size "$minibatch_size" \
      --parallel-opts "$parallel_opts" \
      --io-opts "--max-jobs-run 12" \
      --initial-learning-rate 0.01 --final-learning-rate 0.001 \
      --cmd "$decode_cmd" \
      --pnorm-input-dim 3500 \
      --pnorm-output-dim 350 \
      --num-hidden-layers 4 \
      --mix-up 12000 \
      data/train_960_hires data/lang exp/tri6b $dir  || exit 1;
  fi
  
  if [ $stage -le 8 ]; then
    # dump iVectors for the testing data.
    for test in dev_clean dev_other; do
      steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 20 \
        data/${test}_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_$test || exit 1;
    done
  fi
  
  
  if [ $stage -le 9 ]; then
    # this does offline decoding that should give about the same results as the
    # real online decoding (the one with --per-utt true)
    for test in dev_clean dev_other; do
      steps/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \
        --online-ivector-dir exp/nnet2_online/ivectors_${test} \
        exp/tri6b/graph_tgsmall data/${test}_hires $dir/decode_${test}_tgsmall || exit 1;
      steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
        data/${test}_hires $dir/decode_${test}_{tgsmall,tgmed}  || exit 1;
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
        data/$test $dir/decode_${test}_{tgsmall,tglarge} || exit 1;
    done
  fi
  
  
  if [ $stage -le 10 ]; then
    # If this setup used PLP features, we'd have to give the option --feature-type plp
    # to the script below.
    steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
      data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1;
  fi
  
  if [ $stage -le 11 ]; then
    # do the actual online decoding with iVectors, carrying info forward from
    # previous utterances of the same speaker.
    for test in test_clean test_other dev_clean dev_other; do
      steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \
        exp/tri6b/graph_tgsmall data/$test ${dir}_online/decode_${test}_tgsmall || exit 1;
      steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed}  || exit 1;
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge} || exit 1;
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,fglarge} || exit 1;
    done
  fi
  
  if [ $stage -le 12 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    for test in dev_clean dev_other; do
      steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \
        --per-utt true exp/tri6b/graph_tgsmall data/$test ${dir}_online/decode_${test}_tgsmall_utt || exit 1;
      steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed}_utt  || exit 1;
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge}_utt || exit 1;
    done
  fi
  
  if [ $stage -le 13 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information, but looks to the end
    # of the utterance while computing the iVector (--online false)
    for test in dev_clean dev_other; do
      steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \
        --per-utt true --online false exp/tri6b/graph_tgsmall data/$test \
          ${dir}_online/decode_${test}_tgsmall_utt_offline || exit 1;
      steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed}_utt_offline  || exit 1;
      steps/lmrescore_const_arpa.sh \
        --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
        data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge}_utt_offline || exit 1;
    done
  fi
  
  exit 0;
  ###### Comment out the "exit 0" above to run the multi-threaded decoding. #####
  
  if [ $stage -le 14 ]; then
    # Demonstrate the multi-threaded decoding.
    test=dev_clean
    steps/online/nnet2/decode.sh --threaded true \
      --config conf/decode.config --cmd "$decode_cmd" --nj 30 \
      --per-utt true exp/tri6b/graph_tgsmall data/$test \
      ${dir}_online/decode_${test}_tgsmall_utt_threaded || exit 1;
  fi
  
  if [ $stage -le 15 ]; then
    # Demonstrate the multi-threaded decoding with endpointing.
    test=dev_clean
    steps/online/nnet2/decode.sh --threaded true --do-endpointing true \
      --config conf/decode.config --cmd "$decode_cmd" --nj 30 \
      --per-utt true exp/tri6b/graph_tgsmall data/$test \
      ${dir}_online/decode_${test}_tgsmall_utt_threaded_ep || exit 1;
  fi
  
  exit 0;