Blame view
egs/librispeech/s5/local/online/run_nnet2.sh
6.61 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
#!/bin/bash # example script for online-nnet2 system training and decoding, # based on the one for fisher-English. # note: run_nnet2_ms.sh gives better results, but it's slower to train. . ./cmd.sh stage=0 train_stage=-10 use_gpu=true dir=exp/nnet2_online/nnet_a set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 # the _a is in case I want to change the parameters. else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" fi local/online/run_nnet2_common.sh --stage $stage if [ $stage -le 7 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi # The size of the system is kept rather smaller than the run_7a_960.sh system: # this is because we want it to be small enough that we could plausibly run it # in real-time. steps/nnet2/train_pnorm_simple2.sh --stage $train_stage \ --num-epochs 8 --num-jobs-nnet 6 \ --splice-width 7 --feat-type raw \ --online-ivector-dir exp/nnet2_online/ivectors_train_960_hires \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --io-opts "--max-jobs-run 12" \ --initial-learning-rate 0.01 --final-learning-rate 0.001 \ --cmd "$decode_cmd" \ --pnorm-input-dim 3500 \ --pnorm-output-dim 350 \ --num-hidden-layers 4 \ --mix-up 12000 \ data/train_960_hires data/lang exp/tri6b $dir || exit 1; fi if [ $stage -le 8 ]; then # dump iVectors for the testing data. for test in dev_clean dev_other; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 20 \ data/${test}_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_$test || exit 1; done fi if [ $stage -le 9 ]; then # this does offline decoding that should give about the same results as the # real online decoding (the one with --per-utt true) for test in dev_clean dev_other; do steps/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \ --online-ivector-dir exp/nnet2_online/ivectors_${test} \ exp/tri6b/graph_tgsmall data/${test}_hires $dir/decode_${test}_tgsmall || exit 1; steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/${test}_hires $dir/decode_${test}_{tgsmall,tgmed} || exit 1; steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/$test $dir/decode_${test}_{tgsmall,tglarge} || exit 1; done fi if [ $stage -le 10 ]; then # If this setup used PLP features, we'd have to give the option --feature-type plp # to the script below. steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \ data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1; fi if [ $stage -le 11 ]; then # do the actual online decoding with iVectors, carrying info forward from # previous utterances of the same speaker. for test in test_clean test_other dev_clean dev_other; do steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ exp/tri6b/graph_tgsmall data/$test ${dir}_online/decode_${test}_tgsmall || exit 1; steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed} || exit 1; steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge} || exit 1; steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \ data/$test ${dir}_online/decode_${test}_{tgsmall,fglarge} || exit 1; done fi if [ $stage -le 12 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information. for test in dev_clean dev_other; do steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true exp/tri6b/graph_tgsmall data/$test ${dir}_online/decode_${test}_tgsmall_utt || exit 1; steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed}_utt || exit 1; steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge}_utt || exit 1; done fi if [ $stage -le 13 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information, but looks to the end # of the utterance while computing the iVector (--online false) for test in dev_clean dev_other; do steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true --online false exp/tri6b/graph_tgsmall data/$test \ ${dir}_online/decode_${test}_tgsmall_utt_offline || exit 1; steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tgmed}_utt_offline || exit 1; steps/lmrescore_const_arpa.sh \ --cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \ data/$test ${dir}_online/decode_${test}_{tgsmall,tglarge}_utt_offline || exit 1; done fi exit 0; ###### Comment out the "exit 0" above to run the multi-threaded decoding. ##### if [ $stage -le 14 ]; then # Demonstrate the multi-threaded decoding. test=dev_clean steps/online/nnet2/decode.sh --threaded true \ --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true exp/tri6b/graph_tgsmall data/$test \ ${dir}_online/decode_${test}_tgsmall_utt_threaded || exit 1; fi if [ $stage -le 15 ]; then # Demonstrate the multi-threaded decoding with endpointing. test=dev_clean steps/online/nnet2/decode.sh --threaded true --do-endpointing true \ --config conf/decode.config --cmd "$decode_cmd" --nj 30 \ --per-utt true exp/tri6b/graph_tgsmall data/$test \ ${dir}_online/decode_${test}_tgsmall_utt_threaded_ep || exit 1; fi exit 0; |