Blame view
egs/librispeech/s5/local/online/run_nnet2_common.sh
4.16 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
#!/bin/bash # this script contains some common (shared) parts of the run_nnet*.sh scripts. . ./cmd.sh stage=0 set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if [ $stage -le 1 ]; then # Create high-resolution MFCC features (with 40 cepstra instead of 13). # this shows how you can split across multiple file-systems. we'll split the # MFCC dir across multiple locations. You might want to be careful here, if you # have multiple copies of Kaldi checked out and run the same recipe, not to let # them overwrite each other. mfccdir=mfcc if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$mfccdir/storage $mfccdir/storage fi for datadir in train_960 test_clean test_other dev_clean dev_other; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires steps/make_mfcc.sh --nj 70 --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1; done # now create some data subsets. # mixed is the clean+other data. # 30k is 1/10 of the data (around 100 hours), 60k is 1/5th of it (around 200 hours). utils/subset_data_dir.sh data/train_960_hires 30000 data/train_mixed_hires_30k utils/subset_data_dir.sh data/train_960_hires 60000 data/train_mixed_hires_60k fi if [ $stage -le 2 ]; then # We need to build a small system just because we need the LDA+MLLT transform # to train the diag-UBM on top of. We align a subset of training data for # this purpose. utils/subset_data_dir.sh --utt-list <(awk '{print $1}' data/train_mixed_hires_30k/utt2spk) \ data/train_960 data/train_960_30k steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_960_30k data/lang exp/tri6b exp/nnet2_online/tri6b_ali_30k fi if [ $stage -le 3 ]; then # Train a small system just for its LDA+MLLT transform. We use --num-iters 13 # because after we get the transform (12th iter is the last), any further # training is pointless. steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \ --realign-iters "" \ --splice-opts "--left-context=3 --right-context=3" \ 5000 10000 data/train_mixed_hires_30k data/lang \ exp/nnet2_online/tri6b_ali_30k exp/nnet2_online/tri7b fi if [ $stage -le 4 ]; then mkdir -p exp/nnet2_online # To train a diagonal UBM we don't need very much data, so use a small subset # (actually, it's not that small: still around 100 hours). steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 700000 \ data/train_mixed_hires_30k 512 exp/nnet2_online/tri7b exp/nnet2_online/diag_ubm fi if [ $stage -le 5 ]; then # iVector extractors can in general be sensitive to the amount of data, but # this one has a fairly small dim (defaults to 100) so we don't use all of it, # we use just the 60k subset (about one fifth of the data, or 200 hours). steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_mixed_hires_60k exp/nnet2_online/diag_ubm exp/nnet2_online/extractor || exit 1; fi if [ $stage -le 6 ]; then ivectordir=exp/nnet2_online/ivectors_train_960_hires if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $ivectordir/storage ]; then utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$ivectordir/storage $ivectordir/storage fi # We extract iVectors on all the train data, which will be what we train the # system on. With --utts-per-spk-max 2, the script. pairs the utterances # into twos, and treats each of these pairs as one speaker. Note that these # are extracted 'online'. # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_960_hires data/train_960_hires_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 60 \ data/train_960_hires_max2 exp/nnet2_online/extractor $ivectordir || exit 1; fi exit 0; |