Blame view

egs/librispeech/s5/local/online_pitch/run_nnet2_common.sh 2.02 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  #!/bin/bash
  
  # this script contains some common (shared) parts of the run_nnet*.sh scripts.
  
  . ./cmd.sh
  
  
  stage=0
  
  set -e
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  
  if [ $stage -le 1 ]; then
    # Create high-resolution MFCC features (with 40 cepstra instead of 13).
    # this shows how you can split across multiple file-systems.  we'll split the
    # MFCC dir across multiple locations.  You might want to be careful here, if you
    # have multiple copies of Kaldi checked out and run the same recipe, not to let
    # them overwrite each other.
    mfccdir=mfcc
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then
      utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/librispeech-$(date +'%m_%d_%H_%M')/s5/$mfccdir/storage $mfccdir/storage
    fi
  
    for datadir in train_960 dev_clean dev_other; do
      utils/copy_data_dir.sh data/$datadir data/${datadir}_hiresp
      steps/make_mfcc_pitch_online.sh --nj 150 --mfcc-config conf/mfcc_hires.conf \
         --online-pitch-config conf/online_pitch.conf \
        --cmd "$train_cmd" data/${datadir}_hiresp exp/make_hiresp/$datadir $mfccdir || exit 1;
      steps/compute_cmvn_stats.sh data/${datadir}_hiresp exp/make_hiresp/$datadir $mfccdir || exit 1;
  
      # dump plain MFCC features by selecting MFCC-only part
      steps/select_feats.sh 0-39 data/${datadir}_hiresp data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1;
      steps/compute_cmvn_stats.sh data/${datadir}_hires exp/make_hires/$datadir $mfccdir || exit 1;
    done
  
    # now create some data subsets.
    # mixed is the clean+other data.
    # 30k is 1/10 of the data (around 100 hours), 60k is 1/5th of it (around 200 hours).
    utils/subset_data_dir.sh data/train_960_hires 30000 data/train_mixed_hires_30k
    utils/subset_data_dir.sh data/train_960_hires 60000 data/train_mixed_hires_60k
  fi
  
  # The stages where we build the iVector extractor are the same as the
  # non-pitch system, because the features given to the iVector extractor don't use pitch.
  steps/online/run_nnet2_common.sh --stage 2 || exit 1;
  
  exit 0;