Blame view

egs/lre07/v1/lid/train_full_ubm.sh 4.63 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  #!/bin/bash
  # Copyright 2012  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  #           2013  Daniel Povey
  #           2014  David Snyder
  
  # This trains a full-covariance UBM from an existing (diagonal or full) UBM,
  # for a specified number of iterations.  This is for speaker-id systems
  # (we use features specialized for that, and vad).
  
  # Begin configuration section.
  nj=16
  cmd=run.pl
  stage=-2
  num_gselect=20 # cutoff for Gaussian-selection that we do once at the start.
  subsample=5
  num_iters=4
  min_gaussian_weight=1.0e-04
  remove_low_count_gaussians=true # set this to false if you need #gauss to stay fixed.
  cleanup=true
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  if [ -f path.sh ]; then . ./path.sh; fi
  . parse_options.sh || exit 1;
  
  if [ $# != 3 ]; then
    echo "Usage: steps/train_full_ubm.sh <data> <old-ubm-dir> <new-ubm-dir>"
    echo "Trains a full-covariance UBM starting from an existing diagonal or"
    echo "full-covariance UBM system."
    echo " e.g.: steps/train_full_ubm.sh --num-iters 8 data/train exp/diag_ubm exp/full_ubm"
    echo "main options (for others, see top of script file)"
    echo "  --config <config-file>                           # config containing options"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --nj <n|16>                                      # number of parallel training jobs"
    echo "  --num-gselect <n|20>                             # Number of Gaussians to select using"
    echo "                                                   # initial model (diagonalized if needed)"
    echo "  --subsample <n|5>                                # Take every n'th sample, for efficiency"
    echo "  --num-iters <n|4>                                # Number of iterations of E-M"
    echo "  --min-gaussian-weight <weight|1.0e-05>           # Minimum Gaussian weight (below this,"
    echo "                                                   # we won't update, and will remove Gaussians"
    echo "                                                   # if --remove-low-count-gaussians is true"
    echo "  --remove-low-count-gaussians <true,false|true>   # If true, remove Gaussians below min-weight"
    echo "                                                   # (will only happen on last iteration, in any case"
    echo "  --cleanup <true,false|true>                      # If true, clean up accumulators, intermediate"
    echo "                                                   # models and gselect info"
    exit 1;
  fi
  
  data=$1
  srcdir=$2
  dir=$3
  
  for f in $data/feats.scp $data/vad.scp; do
    [ ! -f $f ] && echo "No such file $f" && exit 1;
  done
  
  
  mkdir -p $dir/log
  echo $nj > $dir/num_jobs
  sdata=$data/split$nj;
  utils/split_data.sh $data $nj || exit 1;
  
  ## Set up features.
  feats="ark,s,cs:apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 scp:$sdata/JOB/feats.scp ark:- | add-deltas-sdc ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |"
  
  if [ $stage -le -2 ]; then
    if [ -f $srcdir/final.dubm ]; then # diagonal-covariance in $srcdir
      $cmd $dir/log/convert_diag_to_full \
        gmm-global-to-fgmm $srcdir/final.dubm $dir/0.ubm || exit 1;
    elif [ -f $srcdir/final.ubm ]; then
      cp $srcdir/final.ubm $dir/0.ubm || exit 1;
    else
      echo "$0: in $srcdir, expecting final.ubm or final.dubm to exist"
      exit 1;
    fi
  fi
  
  if [ $stage -le -1 ]; then
    echo "$0: doing Gaussian selection (using diagonal form of model; selecting $num_gselect indices)"
    $cmd JOB=1:$nj $dir/log/gselect.JOB.log \
      gmm-gselect --n=$num_gselect "fgmm-global-to-gmm $dir/0.ubm - |" "$feats" \
      "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1;
  fi
  
  
  x=0
  while [ $x -lt $num_iters ]; do
    echo "Pass $x"
    if [ $stage -le $x ]; then
      $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
        fgmm-global-acc-stats "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" $dir/$x.ubm "$feats" \
        $dir/$x.JOB.acc || exit 1;
  
      if [ $[$x+1] -eq $num_iters ];then
        lowcount_opt="--remove-low-count-gaussians=$remove_low_count_gaussians" # as specified by user.
      else
      # On non-final iters, we in any case can't remove low-count Gaussians because it would
      # cause the gselect info to become out of date.
        lowcount_opt="--remove-low-count-gaussians=false"
      fi
      $cmd $dir/log/update.$x.log \
      fgmm-global-est $lowcount_opt --min-gaussian-weight=$min_gaussian_weight --verbose=2 $dir/$x.ubm "fgmm-global-sum-accs - $dir/$x.*.acc |" \
        $dir/$[$x+1].ubm || exit 1;
      $cleanup && rm $dir/$x.*.acc $dir/$x.ubm
    fi
    x=$[$x+1]
  done
  
  $cleanup && rm $dir/gselect.*.gz
  
  rm $dir/final.ubm 2>/dev/null
  mv $dir/$x.ubm $dir/final.ubm || exit 1;