Blame view
egs/lre07/v2/local/dnn/run_nnet2_multisplice.sh
2.02 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
#!/bin/bash # This script is based on run_nnet2_multisplice.sh in # egs/fisher_english/s5/local/online. It has been modified # for language recognition. . ./cmd.sh stage=1 train_stage=-10 use_gpu=true set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh # assume use_gpu=true since it would be way too slow otherwise. if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 dir=exp/nnet2_online/nnet_ms_a mkdir -p exp/nnet2_online # Stages 1 through 5 are done in run_nnet2_common.sh, # so it can be shared with other similar scripts. local/dnn/run_nnet2_common.sh --stage $stage if [ $stage -le 6 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then utils/create_split_dir.pl /export/b0{6,7,8,9}/$(USER)/kaldi-data/egs/lre07/v2/$dir/egs/storage fi # Because we have a lot of data here and we don't want the training to take # too long, we reduce the number of epochs from the defaults (15 + 5) to (3 + # 1). The option "--io-opts '--max-jobs-run 12'" is to have more than the default number # (5) of jobs dumping the egs to disk; this is OK since we're splitting our # data across four filesystems for speed. lid/nnet2/train_multisplice_accel2.sh --stage $train_stage \ --feat-type raw \ --splice-indexes "layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-7:2" \ --num-epochs 6 \ --num-hidden-layers 6 \ --num-jobs-initial 3 --num-jobs-final 18 \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --mix-up 10500 \ --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \ --cmd "$decode_cmd" \ --egs-dir "$common_egs_dir" \ --pnorm-input-dim 3500 \ --pnorm-output-dim 350 \ data/train_hires_asr data/lang exp/tri5a $dir || exit 1; fi exit 0; |