Blame view

egs/mini_librispeech/s5/local/grammar/extend_vocab_demo_silprobs.sh 13.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
  #!/usr/bin/env bash
  
  # This script demonstrates how to use the grammar-decoding framework to build
  # graphs made out of more than one part.  (This version uses word-specific
  # silence probabilities). It demonstrates using `fstequivalent`
  # that the graph constructed this way is equivalent to what you would create if
  # you had the LM all as a single piece.  This uses the command line tools to
  # expand to a regular FST (--write-as-grammar=false) In practice you might not
  # want do to that, since the result might be large, and since writing the entire
  # thing might take too much time.  The code itself allows you to construct these
  # GrammarFst objects in lightweight way and decode using them.
  
  # Unfortunately the filenames here are not very well through through.  I hope to
  # rework this when I have time.
  
  stage=0
  run_g2p=false  # set this to true to run the g2p stuff, it's slow so
                 # by default we fake it by providing what it previously output
  set -e
  
  . ./path.sh
  . utils/parse_options.sh
  
  
  tree_dir=exp/chain/tree_sp
  lang_base=data/lang_basevocab
  lang_ext=data/lang_extvocab
  
  # For the purposes of this script we just need a biphone tree and associated
  # transition-model for testing, because we're testing it at the graph level,
  # i.e. testing equivalence of compiled HCLG graphs; there is no decoding
  # involved here.
  
  # We're doing this with the "no-silprobs" dictionary dir for now, as we
  # need to write some scripts to support silprobs with this.
  
  # For reference, here is how we could create the 'lang' dir for the
  # baseline.
  #utils/prepare_lang.sh data/local/dict \
  #   "<UNK>" data/local/lang_tmp data/lang
  
  if [ $stage -le 0 ]; then
    cp -r data/local/dict data/local/dict_basevocab
    echo "#nonterm:unk" > data/local/dict_basevocab/nonterminals.txt
  
    utils/prepare_lang.sh data/local/dict_basevocab \
         "<UNK>" data/local/lang_tmp $lang_base
  fi
  
  if [ $stage -le 1 ]; then
    # note: <UNK> does appear in that arpa file, with a reasonable probability
    # (0.0)...  presumably because the vocab that the arpa file was built with was
    # not vast, so there were plenty of OOVs.  It would be possible to adjust its
    # probability with adjust_unk_arpa.pl, but for now we just leave it as-is.
    # The <UNK> appears quite a few times in the ARPA.  In the language model we
    # replaced it with #nonterm:unk, which will later expand to our custom graph
    # of new words.
  
    # We don't want the #nonterm:unk on the output side of G.fst, or it would
    # appear in the decoded output, so we remove it using the 'fstrmsymbols' command.
  
    nonterm_unk=$(grep '#nonterm:unk' $lang_base/words.txt | awk '{print $2}')
  
    gunzip -c  data/local/lm/lm_tgsmall.arpa.gz | \
      sed 's/<UNK>/#nonterm:unk/g' | \
      arpa2fst --disambig-symbol=#0 \
               --read-symbol-table=$lang_base/words.txt - | \
      fstrmsymbols --remove-from-output=true "echo $nonterm_unk|" - $lang_base/G.fst
  fi
  
  
  if [ $stage -le 2 ]; then
    # make the top-level part of the graph.
    utils/mkgraph.sh --self-loop-scale 1.0 $lang_base $tree_dir $tree_dir/extvocab_top
  fi
  
  if [ $stage -le 3 ] && $run_g2p; then
    # you may have to do some stuff manually to install sequitur, to get this to work.
    dict=data/local/dict_basevocab
    steps/dict/train_g2p.sh --silence-phones $dict/silence_phones.txt $dict/lexicon.txt  $tree_dir/extvocab_g2p
  fi
  
  
  if [ $stage -le 4 ]; then
    # Create data/local/dict_newvocab as a dict-dir containing just the
    # newly created vocabulary entries (but the same phone list as our old setup, not
    # that it matters)
  
    mkdir -p $tree_dir/extvocab_lexicon
  
    # First find a list of words in the test set that are out of vocabulary.
    # Of course this is totally cheating.
    awk -v w=data/lang/words.txt 'BEGIN{while(getline <w) seen[$1] = $1} {for(n=2;n<=NF;n++) if(!($n in seen)) oov[$n] = 1}
                                  END{ for(k in oov) print k;}' < data/dev_clean_2/text > $tree_dir/extvocab_lexicon/words
    echo "$0: generating g2p entries for $(wc -l <$tree_dir/extvocab_lexicon/words) words"
  
    if $run_g2p; then
      steps/dict/apply_g2p.sh $tree_dir/extvocab_lexicon/words $tree_dir/extvocab_g2p  $tree_dir/extvocab_lexicon
    else
      cat <<EOF >$tree_dir/extvocab_lexicon//lexicon.lex
  HARDWIGG	0.962436	HH AA1 R D W IH1 G
  SUDVESTR	0.162048	S AH1 D V EY1 S T R
  SUDVESTR	0.133349	S AH1 D V EH1 S T R
  SUDVESTR	0.114376	S AH1 D V EH1 S T ER0
  VINOS	0.558345	V IY1 N OW0 Z
  VINOS	0.068883	V AY1 N OW0 Z
  VINOS	0.068431	V IY1 N OW0 S
  DOMA	0.645714	D OW1 M AH0
  DOMA	0.118255	D UW1 M AH0
  DOMA	0.080682	D OW0 M AH0
  GWYNPLAINE'S	0.983053	G W IH1 N P L EY1 N Z
  SHIMERDA	0.610922	SH IH0 M EH1 R D AH0
  SHIMERDA	0.175678	SH IY0 M EH1 R D AH0
  SHIMERDA	0.069785	SH AY1 M ER1 D AH0
  MYRDALS	0.479183	M IH1 R D AH0 L Z
  MYRDALS	0.135225	M ER1 D AH0 L Z
  MYRDALS	0.115478	M IH1 R D L Z
  HEUCHERA	0.650042	HH OY1 K IH1 R AH0
  HEUCHERA	0.119363	HH OY1 K EH1 R AH0
  HEUCHERA	0.077907	HH OY1 K ER0 AH0
  IMPARA	0.906222	IH0 M P AA1 R AH0
  VERLOC'S	0.564847	V ER0 L AA1 K S
  VERLOC'S	0.173540	V ER1 L AH0 K S
  VERLOC'S	0.050543	V ER1 L AA1 K S
  UNTRUSSING	0.998019	AH0 N T R AH1 S IH0 NG
  DARFHULVA	0.317057	D AA2 F UH1 L V AH0
  DARFHULVA	0.262882	D AA2 F HH UH1 L V AH0
  DARFHULVA	0.064055	D AA2 F HH UW1 L V AH0
  FINNACTA	0.594586	F IH1 N AH0 K T AH0
  FINNACTA	0.232454	F IH1 N AE1 K T AH0
  FINNACTA	0.044733	F IH1 N IH0 K T AH0
  YOKUL	0.845279	Y OW1 K AH0 L
  YOKUL	0.051082	Y OW2 K AH0 L
  YOKUL	0.029435	Y OW0 K AH0 L
  CONGAL	0.504228	K AA1 NG G AH0 L
  CONGAL	0.151648	K AA2 NG G AH0 L
  CONGAL	0.137837	K AH0 N JH AH0 L
  DELECTASTI	0.632180	D IH0 L EH0 K T EY1 S T IY0
  DELECTASTI	0.203808	D IH0 L EH1 K T EY1 S T IY0
  DELECTASTI	0.066722	D IH0 L EH0 K T AE1 S T IY0
  YUNDT	0.975077	Y AH1 N T
  QUINCI	0.426115	K W IH1 N S IY0
  QUINCI	0.369324	K W IH1 N CH IY0
  QUINCI	0.064507	K W IY0 N CH IY0
  BIRDIKINS	0.856979	B ER1 D IH0 K AH0 N Z
  BIRDIKINS	0.045315	B ER1 D AH0 K AH0 N Z
  SNEFFELS	0.928413	S N EH1 F AH0 L Z
  FJORDUNGR	0.130629	F Y AO1 R D UW0 NG G R
  FJORDUNGR	0.125082	F Y AO1 R D AH0 NG G R
  FJORDUNGR	0.111035	F Y AO1 R D UH1 NG R
  YULKA	0.540253	Y UW1 L K AH0
  YULKA	0.295588	Y AH1 L K AH0
  YULKA	0.076631	Y UH1 L K AH0
  LACQUEY'S	0.987908	L AE1 K IY0 Z
  OSSIPON'S	0.651400	AA1 S AH0 P AA2 N Z
  OSSIPON'S	0.118444	AA1 S AH0 P AA0 N Z
  OSSIPON'S	0.106377	AA1 S AH0 P AH0 N Z
  SAKNUSSEMM	0.060270	S AE1 K N AH1 S EH1 M
  SAKNUSSEMM	0.044992	S AE1 K N AH0 S EH1 M
  SAKNUSSEMM	0.044084	S AA0 K N AH1 S EH1 M
  CONGAL'S	0.618287	K AA1 NG G AH0 L Z
  CONGAL'S	0.185952	K AA2 NG G AH0 L Z
  CONGAL'S	0.115143	K AH0 N G AH0 L Z
  TARRINZEAU	0.159153	T AA1 R IY0 N Z OW1
  TARRINZEAU	0.136536	T AA1 R AH0 N Z OW1
  TARRINZEAU	0.100924	T EH1 R IY0 N Z OW1
  SHIMERDAS	0.230819	SH IH0 M EH1 R D AH0 Z
  SHIMERDAS	0.216235	SH IH0 M EH1 R D AH0 S
  SHIMERDAS	0.073311	SH AY1 M ER1 D AH0 Z
  RUGGEDO'S	0.821285	R UW0 JH EY1 D OW0 Z
  RUGGEDO'S	0.166825	R AH1 G AH0 D OW0 Z
  CORNCAKES	0.934118	K AO1 R N K EY2 K S
  VENDHYA	0.616662	V EH0 N D Y AH0
  VENDHYA	0.178349	V EH1 N D Y AH0
  VENDHYA	0.160768	V AA1 N D Y AH0
  GINGLE	0.919815	G IH1 NG G AH0 L
  STUPIRTI	0.422653	S T UW0 P IH1 R T IY0
  STUPIRTI	0.126925	S T UW1 P IH0 R T IY0
  STUPIRTI	0.078422	S T UW1 P AH0 R T IY0
  HERBIVORE	0.950887	HH ER1 B IH0 V AO2 R
  BRION'S	0.838326	B R AY1 AH0 N Z
  BRION'S	0.140310	B R IY0 AH0 N Z
  DELAUNAY'S	0.993259	D EH1 L AO0 N EY0 Z
  KHOSALA	0.920908	K OW0 S AA1 L AH0
  BRANDD	0.827461	B R AE1 N D
  BRANDD	0.085646	B R AE2 N D
  GARDAR	0.598675	G AA0 R D AA1 R
  GARDAR	0.289831	G AA1 R D AA2 R
  GARDAR	0.057983	G AA0 R D AA2 R
  MACKLEWAIN	0.570209	M AE1 K AH0 L W EY0 N
  MACKLEWAIN	0.101477	M AH0 K AH0 L W EY0 N
  MACKLEWAIN	0.067905	M AE1 K AH0 L W EY2 N
  LIBANO	0.993297	L IY0 B AA1 N OW0
  MOLING	0.782578	M OW1 L IH0 NG
  MOLING	0.059362	M OW2 L IH0 NG
  MOLING	0.056217	M AA1 L IH0 NG
  BENNYDECK'S	0.583859	B EH1 N IY0 D EH0 K S
  BENNYDECK'S	0.276699	B EH1 N IH0 D EH0 K S
  BENNYDECK'S	0.028343	B EH1 N IH0 D IH0 K S
  MACKLEWAIN'S	0.615766	M AE1 K AH0 L W EY0 N Z
  MACKLEWAIN'S	0.109585	M AH0 K AH0 L W EY0 N Z
  MACKLEWAIN'S	0.039423	M AE1 K AH0 L W AH0 N Z
  PRESTY	0.616071	P R EH1 S T IY0
  PRESTY	0.288701	P R AH0 S T IY0
  BREADHOUSE	0.995874	B R EH1 D HH AW2 S
  BUZZER'S	0.992495	B AH1 Z ER0 Z
  BHUNDA	0.502439	B UW1 N D AH0
  BHUNDA	0.267733	B AH0 N D AH0
  BHUNDA	0.193772	B UH1 N D AH0
  PINKIES	0.998440	P IH1 NG K IY0 Z
  TROKE	0.723320	T R OW1 K
  TROKE	0.269707	T R OW2 K
  OSSIPON	0.728486	AA1 S AH0 P AA2 N
  OSSIPON	0.098752	AA1 S AH0 P AH0 N
  OSSIPON	0.033957	AA1 S AH0 P AO0 N
  RIVERLIKE	0.991731	R IH1 V ER0 L AY2 K
  NICLESS	0.478183	N IH1 K L AH0 S
  NICLESS	0.159889	N IH0 K L AH0 S
  NICLESS	0.120611	N IH1 K L IH0 S
  TRAMPE	0.959184	T R AE1 M P
  VERLOC	0.610461	V ER0 L AA1 K
  VERLOC	0.128479	V ER1 L AH0 K
  VERLOC	0.073687	V ER1 L AA0 K
  GANNY	0.991703	G AE1 N IY0
  AMBROSCH	0.302906	AE0 M B R OW1 SH
  AMBROSCH	0.201163	AE0 M B R AO1 SH
  AMBROSCH	0.109274	AE1 M B R AO1 SH
  FIBI	0.619154	F IH1 B IY0
  FIBI	0.163168	F IY1 B IY0
  FIBI	0.083443	F AY1 B IY0
  IROLG	0.823123	IH0 R OW1 L G
  IROLG	0.053196	IH0 R OW1 L JH
  IROLG	0.021038	IH0 R OW1 L JH IY1
  BALVASTRO	0.251546	B AA0 L V AA1 S T R OW0
  BALVASTRO	0.213351	B AE0 L V AE1 S T R OW0
  BALVASTRO	0.133005	B AA0 L V AE1 S T R OW0
  BOOLOOROO	0.676757	B UW1 L UW1 R UW0
  BOOLOOROO	0.173653	B UW1 L UH2 R UW0
  BOOLOOROO	0.086501	B UW1 L UH0 R UW0
  EOF
    fi
  
    # extend_lang.sh needs it to have basename 'lexiconp.txt'.
    mv $tree_dir/extvocab_lexicon/lexicon.lex $tree_dir/extvocab_lexicon/lexiconp.txt
  
    [ -f data/lang_extvocab/G.fst ] && rm data/lang_extvocab/G.fst
    utils/lang/extend_lang.sh  data/lang_basevocab $tree_dir/extvocab_lexicon/lexiconp.txt  data/lang_extvocab
  fi
  
  if [ $stage -le 5 ]; then
    # make the G.fst for the extra words.  Just assign equal probabilities to all of
    # them.  The words will all transition from state 1 to 2.
    cat <<EOF > $lang_ext/G.txt
  0    1    #nonterm_begin <eps>
  2    3    #nonterm_end <eps>
  3
  EOF
    lexicon=$tree_dir/extvocab_lexicon/lexiconp.txt
    num_words=$(wc -l <$lexicon)
    cost=$(perl -e "print log($num_words)");
    awk -v cost=$cost '{print 1, 2, $1, $1, cost}' <$lexicon >>$lang_ext/G.txt
    fstcompile --isymbols=$lang_ext/words.txt --osymbols=$lang_ext/words.txt <$lang_ext/G.txt | \
      fstarcsort --sort_type=ilabel >$lang_ext/G.fst
  fi
  
  if [ $stage -le 6 ]; then
    # make the part of the graph that will be included.
    # Refer to the 'compile-graph' commands in ./simple_demo.sh for how you'd do
    # this in code.
    utils/mkgraph.sh --self-loop-scale 1.0 $lang_ext $tree_dir $tree_dir/extvocab_part
  fi
  
  if [ $stage -le 7 ]; then
    offset=$(grep nonterm_bos $lang_ext/phones.txt | awk '{print $2}')
    nonterm_unk=$(grep nonterm:unk $lang_ext/phones.txt | awk '{print $2}')
  
    mkdir -p $tree_dir/extvocab_combined
    [ -d $tree_dir/extvocab_combined/phones ] && rm -r $tree_dir/extvocab_combined/phones
    # the decoding script expects words.txt and phones/, copy them from the extvocab_part
    # graph directory where they will have suitable values.
    cp -r $tree_dir/extvocab_part/{words.txt,phones.txt,phones/} $tree_dir/extvocab_combined
  
    # the following, due to --write-as-grammar=false, compiles it into an FST
    # which can be decoded by our normal decoder.
    make-grammar-fst --write-as-grammar=false --nonterm-phones-offset=$offset $tree_dir/extvocab_top/HCLG.fst \
                     $nonterm_unk $tree_dir/extvocab_part/HCLG.fst  $tree_dir/extvocab_combined/HCLG.fst
  
    # the following compiles it and writes as GrammarFst.  The size is 176M, vs. 182M for HCLG.fst.
    # In other examples, of course the difference might be more.
  
    make-grammar-fst --write-as-grammar=true --nonterm-phones-offset=$offset $tree_dir/extvocab_top/HCLG.fst \
                  $nonterm_unk $tree_dir/extvocab_part/HCLG.fst  $tree_dir/extvocab_combined/HCLG.gra
  fi
  
  
  if [ $stage -le 8 ]; then
    # OK, now we actually decode the test data.  For reference, the command which was used to
    # decode the test data in the current (at the time of writing) chain TDNN system
    # local/chain/run_tdnn.sh (as figured out by running it from that stage), was:
    # steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 --frames-per-chunk 140 --nj 38 \
    #   --cmd "queue.pl --mem 4G --num-threads 4" --online-ivector-dir exp/nnet3/ivectors_dev_clean_2_hires \
    #   exp/chain/tree_sp/graph_tgsmall data/dev_clean_2_hires exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2
  
    # We just replace the graph with the one in $treedir/extvocab_combined.
  
    steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 --frames-per-chunk 140 --nj 38 \
      --cmd "queue.pl --mem 4G --num-threads 4" --online-ivector-dir exp/nnet3/ivectors_dev_clean_2_hires \
      exp/chain/tree_sp/extvocab_combined data/dev_clean_2_hires exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb
  
    # s5: grep WER exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb/wer_* | utils/best_wer.sh
    # %WER 11.42 [ 2300 / 20138, 227 ins, 275 del, 1798 sub ] exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb/wer_12_0.0
  
    #.. versus the baseline below:
    # s5: grep WER exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2/wer_* | utils/best_wer.sh
    # %WER 12.01 [ 2418 / 20138, 244 ins, 307 del, 1867 sub ] exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2/wer_13_0.0
  fi
  
  if [ $stage -le 9 ]; then
   steps/nnet3/decode_grammar.sh --acwt 1.0 --post-decode-acwt 10.0 --frames-per-chunk 140 --nj 38 \
      --cmd "queue.pl --mem 4G --num-threads 4" --online-ivector-dir exp/nnet3/ivectors_dev_clean_2_hires \
      exp/chain/tree_sp/extvocab_combined data/dev_clean_2_hires exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb_gra
  
   # WER with grammar decoding is exactly the same as decoding from the converted FST.
   # grep WER exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb_gra/wer_* | utils/best_wer.sh
   # %WER 11.42 [ 2300 / 20138, 227 ins, 275 del, 1798 sub ] exp/chain/tdnn1h_sp/decode_tgsmall_dev_clean_2_ev_comb_gra/wer_12_0.0
  fi