Blame view

egs/rm/s5/local/nnet/run_autoencoder.sh 1.01 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
  #!/bin/bash
  
  # Copyright 2012-2014  Brno University of Technology (Author: Karel Vesely)
  # Apache 2.0
  
  # This example shows how to train a simple autoencoder network.
  # We use <tanh>, little different training hyperparameters and MSE objective.
  
  . ./path.sh
  . ./cmd.sh
  
  set -eu
  
  # Train,
  dir=exp/autoencoder
  data_fmllr=data-fmllr-tri3b
  labels="ark:feat-to-post scp:$data_fmllr/train/feats.scp ark:- |"
  $cuda_cmd $dir/log/train_nnet.log \
    steps/nnet/train.sh --hid-layers 2 --hid-dim 200 --learn-rate 0.00001 \
      --labels "$labels" --num-tgt 40 --train-tool "nnet-train-frmshuff --objective-function=mse" \
      --proto-opts "--no-softmax --activation-type=<Tanh> --hid-bias-mean=0.0 --hid-bias-range=1.0 --param-stddev-factor=0.01" \
      $data_fmllr/train_tr90 $data_fmllr/train_cv10 dummy-dir dummy-dir dummy-dir $dir || exit 1;
  
  # Forward the data,
  output_dir=data-autoencoded/test
  steps/nnet/make_bn_feats.sh --nj 1 --cmd "$train_cmd" --remove-last-components 0 \
    $output_dir $data_fmllr/test $dir $output_dir/{log,data} || exit 1