Blame view
egs/rm/s5/local/nnet/run_autoencoder.sh
1.01 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
#!/bin/bash # Copyright 2012-2014 Brno University of Technology (Author: Karel Vesely) # Apache 2.0 # This example shows how to train a simple autoencoder network. # We use <tanh>, little different training hyperparameters and MSE objective. . ./path.sh . ./cmd.sh set -eu # Train, dir=exp/autoencoder data_fmllr=data-fmllr-tri3b labels="ark:feat-to-post scp:$data_fmllr/train/feats.scp ark:- |" $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --hid-layers 2 --hid-dim 200 --learn-rate 0.00001 \ --labels "$labels" --num-tgt 40 --train-tool "nnet-train-frmshuff --objective-function=mse" \ --proto-opts "--no-softmax --activation-type=<Tanh> --hid-bias-mean=0.0 --hid-bias-range=1.0 --param-stddev-factor=0.01" \ $data_fmllr/train_tr90 $data_fmllr/train_cv10 dummy-dir dummy-dir dummy-dir $dir || exit 1; # Forward the data, output_dir=data-autoencoded/test steps/nnet/make_bn_feats.sh --nj 1 --cmd "$train_cmd" --remove-last-components 0 \ $output_dir $data_fmllr/test $dir $output_dir/{log,data} || exit 1 |