Blame view
egs/rm/s5/local/nnet/run_blstm.sh
2.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
#!/bin/bash # Copyright 2015 Brno University of Technology (Author: Karel Vesely) # Apache 2.0 # This example script trains a BLSTM network on FBANK features. # The initial BLSTM code comes from Ni Chongjia (I2R), thanks! # We use multi-stream training, while the BPTT is done over whole # utterances with similar length (selection done with C++ class MatrixBuffer). # Note: With DNNs in RM, the optimal LMWT is 2-6. Don't be tempted to try acwt's like 0.2, # the value 0.1 is better both for decoding and sMBR. . ./cmd.sh . ./path.sh dev=data-fbank/test train=data-fbank/train dev_original=data/test train_original=data/train gmm=exp/tri3b stage=0 . utils/parse_options.sh || exit 1; set -eu # Make the FBANK features [ ! -e $dev ] && if [ $stage -le 0 ]; then # Dev set utils/copy_data_dir.sh $dev_original $dev || exit 1; rm $dev/{cmvn,feats}.scp steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd" \ $dev $dev/log $dev/data || exit 1; steps/compute_cmvn_stats.sh $dev $dev/log $dev/data || exit 1; # Training set utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd --max-jobs-run 10" \ $train $train/log $train/data || exit 1; steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1; # Split the training set utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10 fi if [ $stage -le 1 ]; then # Train the DNN optimizing per-frame cross-entropy. dir=exp/blstm4i ali=${gmm}_ali # Train $cuda_cmd $dir/log/train_nnet.log \ steps/nnet/train.sh --network-type blstm --learn-rate 0.00004 \ --cmvn-opts "--norm-means=true --norm-vars=true" \ --delta-opts "--delta-order=2" --feat-type plain --splice 0 \ --scheduler-opts "--momentum 0.9 --halving-factor 0.5" \ --train-tool "nnet-train-multistream-perutt" \ --train-tool-opts "--num-streams=10 --max-frames=15000" \ --proto-opts "--cell-dim 320 --proj-dim 200 --num-layers 2" \ ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1; # Decode (reuse HCLG graph) steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.1 \ $gmm/graph $dev $dir/decode || exit 1; fi # TODO : sequence training, echo Success exit 0 # Getting results [see RESULTS file] # for x in exp/*/decode*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done |