Blame view
egs/rm/s5/local/nnet2/run_4d.sh
1.71 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
#!/bin/bash # local/nnet2/run_4d.sh is the new, faster version of the p-norm training script. # The same script works for GPUs, and for CPU only (with --use-gpu false). train_stage=-10 use_gpu=true . ./cmd.sh . ./path.sh . utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 dir=exp/nnet4d_gpu else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" dir=exp/nnet4d fi if [ ! -f $dir/final.mdl ]; then steps/nnet2/train_pnorm_fast.sh --stage $train_stage \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --num-jobs-nnet 4 \ --num-epochs 8 --num-epochs-extra 5 --add-layers-period 1 \ --num-hidden-layers 2 \ --mix-up 4000 \ --initial-learning-rate 0.02 --final-learning-rate 0.004 \ --cmd "$decode_cmd" \ --pnorm-input-dim 1000 \ --pnorm-output-dim 200 \ data/train data/lang exp/tri3b_ali $dir || exit 1; fi steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --transform-dir exp/tri3b/decode \ exp/tri3b/graph data/test $dir/decode & steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --transform-dir exp/tri3b/decode_ug \ exp/tri3b/graph_ug data/test $dir/decode_ug wait |