Blame view
egs/rm/s5/local/nnet2/run_5d.sh
5.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
#!/bin/bash # This script demonstrates discriminative training of p-norm neural nets. # It's on top of run_4d_gpu.sh which uses adapted 40-dimensional features. # This version of the script uses GPUs. We distinguish it by putting "_gpu" # at the end of the directory name. use_gpu=true stage=0 transform_dir=exp/tri3b_ali . ./cmd.sh . ./path.sh . utils/parse_options.sh [ ! -f $transform_dir/num_jobs ] && \ echo "Expected $transform_dir/num_jobs to exist" && exit 1; nj_orig=$(cat $transform_dir/num_jobs) # The queue options in this script are for the CLSP network, and might not work # for you. if $use_gpu; then . ./cmd.sh . ./path.sh ! cuda-compiled && cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF align_gpu_opts="--gpu 1" use_gpu_flag="--use-gpu yes" train_parallel_opts="--gpu 1" train_num_threads=1 srcdir=exp/nnet4d_gpu dir=exp/nnet5d_mpe_gpu nj=$nj_orig else align_gpu_opts= use_gpu_flag="--use-gpu no" train_parallel_opts="--num-threads 6" train_num_threads=6 srcdir=exp/nnet4d dir=exp/nnet5d_mpe if [ "$decode_cmd" != "run.pl" ]; then nj=$[$nj_orig*5]; # use more jobs, or it will be slow in the alignment # phase. But if we are just running everything on # one machine this won't help us else nj=$nj_orig fi fi if [ ! -f $srcdir/final.mdl ]; then echo "$0: expected $srcdir/final.mdl to exist." exit 1; fi # The denominator lattice creation currently doesn't use GPUs; that would be # wasteful since the lattice determinization and graph search use up a fair # amount of CPU, and we'd be idling the GPU much of the time. # We specify 1G each for --mem, which is per thread... it # will likely be less than the default. Increase the beam relative to the # defaults; this is just for this RM setup, where the default beams will likely # generate very thin lattices. # Note: the transform-dir is important to # specify, since this system is on top of fMLLR features. if [ $stage -le 0 ]; then steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \ --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \ --beam 20.0 --lattice-beam 10.0 \ --transform-dir $transform_dir \ data/train data/lang $srcdir ${srcdir}_denlats fi if [ $stage -le 1 ]; then steps/nnet2/align.sh --cmd "$decode_cmd $align_gpu_opts" $use_gpu_flag \ --transform-dir $transform_dir \ --nj $nj data/train data/lang $srcdir ${srcdir}_ali fi if [ $stage -le 2 ]; then steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" \ --num-jobs-nnet 2 --transform-dir $transform_dir \ --num-threads "$train_num_threads" --parallel-opts "$train_parallel_opts" data/train data/lang \ ${srcdir}_ali ${srcdir}_denlats $srcdir/final.mdl $dir fi if [ $stage -le 3 ]; then for epoch in 1 2 3 4; do steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \ --transform-dir exp/tri3b/decode \ exp/tri3b/graph data/test $dir/decode_epoch$epoch & steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \ --transform-dir exp/tri3b/decode_ug \ exp/tri3b/graph_ug data/test $dir/decode_ug_epoch$epoch & done wait fi exit 0; # The following is some test commands that I ran in order to verify that # the neural-net splitting and excising code was working as intended. # ( # acoustic_scale=0.1 # for criterion in smbr mmi mpfe; do # for drop_frames in true false; do # nnet-get-egs-discriminative --drop-frames=$drop_frames --criterion=$criterion --excise=true exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:$transform_dir/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/${dir}_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/${dir}_denlats/lat.1.gz|' "ark:|nnet-combine-egs-discriminative ark:- ark:1.egs" # nnet-get-egs-discriminative --drop-frames=$drop_frames --criterion=$criterion --split=false --excise=false exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:$transform_dir/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/${dir}_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/${dir}_denlats/lat.1.gz|' ark:2.egs # nnet-compare-hash-discriminative --acoustic-scale=$acoustic_scale --drop-frames=$drop_frames --criterion=$criterion $dir/final.mdl ark:1.egs ark:2.egs || exit 1; # done # done # ) |