Blame view

egs/rm/s5/local/nnet2/run_5d_gpu.sh 4.08 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  #!/bin/bash
  
  
  # This script demonstrates discriminative training of p-norm neural nets.
  # It's on top of run_4c_gpu.sh which uses adapted 40-dimensional features.
  # This version of the script uses GPUs.  We distinguish it by putting "_gpu"
  # at the end of the directory name.
  
  
  gpu_opts="--gpu 1"  # This is suitable for the CLSP network,
                                        # you'll likely have to change it.  we'll
                                        # use it later on, in the training (it's
                                        # not used in denlat creation)
  . ./cmd.sh
  . ./path.sh
  ! cuda-compiled && cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  
  # The denominator lattice creation currently doesn't use GPUs.
  
  # Note: we specify 1G for --mem, which is per
  # thread... it will likely be less than the default.  Increase the beam relative
  # to the defaults; this is just for this RM setup, where the default beams will
  # likely generate very thin lattices.  Note: the transform-dir is important to
  # specify, since this system is on top of fMLLR features.
  
  nj=$(cat exp/tri3b_ali/num_jobs)
  dir=nnet4d_gpu
  steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \
        --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \
        --beam 20.0 --lattice-beam 10.0 \
        --transform-dir exp/tri3b_ali \
       data/train data/lang exp/$dir exp/$dir_denlats
  
  steps/nnet2/align.sh  --cmd "$decode_cmd $gpu_opts" --use-gpu yes \
        --transform-dir exp/tri3b_ali \
        --nj $nj data/train data/lang exp/$dir exp/$dir_ali
  
  steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" \
      --num-jobs-nnet 2 --transform-dir exp/tri3b_ali \
      --num-threads 1 --parallel-opts "$gpu_opts" data/train data/lang \
      exp/$dir_ali exp/$dir_denlats exp/$dir/final.mdl exp/nnet5d_mpe_gpu
  
  for epoch in 1 2 3 4; do
     steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \
       --transform-dir exp/tri3b/decode \
       exp/tri3b/graph data/test exp/nnet5d_mpe_gpu/decode_epoch$epoch  &
  
     steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \
       --transform-dir exp/tri3b/decode_ug \
       exp/tri3b/graph_ug data/test exp/nnet5d_mpe_gpu/decode_ug_epoch$epoch &
  done
  
  
  exit 0;
  
  
  
  # The following is some test commands that I ran in order to verify that
  # the neural-net splitting and excising code was working as intended.
  
  # (
  # acoustic_scale=0.1
  # for criterion in smbr mmi mpfe; do
  #   for drop_frames in true false; do
  #     nnet-get-egs-discriminative  --drop-frames=$drop_frames  --criterion=$criterion --excise=true exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:exp/tri3b_ali/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/$dir_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/$dir_denlats/lat.1.gz|' "ark:|nnet-combine-egs-discriminative ark:- ark:1.egs"
  
  #     nnet-get-egs-discriminative --drop-frames=$drop_frames --criterion=$criterion --split=false --excise=false exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:exp/tri3b_ali/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/$dir_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/$dir_denlats/lat.1.gz|' ark:2.egs
  
  #    nnet-compare-hash-discriminative --acoustic-scale=$acoustic_scale --drop-frames=$drop_frames --criterion=$criterion exp/$dir/final.mdl ark:1.egs ark:2.egs || exit 1;
  #  done
  # done
  # )