Blame view
egs/rm/s5/local/nnet2/run_5e_gpu.sh
4.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
#!/bin/bash # This script demonstrates discriminative training of ensemble-trained p-norm neural nets. # It's on top of run_4e_gpu.sh which uses adapted 40-dimensional features. # This version of the script uses GPUs. We distinguish it by putting "_gpu" # at the end of the directory name. gpu_opts="--gpu 1" # This is suitable for the CLSP network, # you'll likely have to change it. we'll # use it later on, in the training (it's # not used in denlat creation) . ./cmd.sh . ./path.sh ! cuda-compiled && cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF # The denominator lattice creation currently doesn't use GPUs. # Note: we specify 1G for --mem, which is per # thread... it will likely be less than the default. Increase the beam relative # to the defaults; this is just for this RM setup, where the default beams will # likely generate very thin lattices. Note: the transform-dir is important to # specify, since this system is on top of fMLLR features. nj=$(cat exp/tri3b_ali/num_jobs) dir=nnet4e_gpu steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \ --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \ --beam 20.0 --lattice-beam 10.0 \ --transform-dir exp/tri3b_ali \ data/train data/lang exp/$dir exp/$dir_denlats steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" --use-gpu yes \ --transform-dir exp/tri3b_ali \ --nj $nj data/train data/lang exp/$dir exp/$dir_ali steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" \ --num-jobs-nnet 2 --transform-dir exp/tri3b_ali \ --num-threads 1 --parallel-opts "$gpu_opts" data/train data/lang \ exp/$dir_ali exp/$dir_denlats exp/$dir/final.mdl exp/nnet5e_mpe_gpu for epoch in 1 2 3 4; do steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \ --transform-dir exp/tri3b/decode \ exp/tri3b/graph data/test exp/nnet5e_mpe_gpu/decode_epoch$epoch & steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \ --transform-dir exp/tri3b/decode_ug \ exp/tri3b/graph_ug data/test exp/nnet5e_mpe_gpu/decode_ug_epoch$epoch & done exit 0; # The following is some test commands that I ran in order to verify that # the neural-net splitting and excising code was working as intended. # ( # acoustic_scale=0.1 # for criterion in smbr mmi mpfe; do # for drop_frames in true false; do # nnet-get-egs-discriminative --drop-frames=$drop_frames --criterion=$criterion --excise=true exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:exp/tri3b_ali/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/$dir_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/$dir_denlats/lat.1.gz|' "ark:|nnet-combine-egs-discriminative ark:- ark:1.egs" # nnet-get-egs-discriminative --drop-frames=$drop_frames --criterion=$criterion --split=false --excise=false exp/tri5c_mpe/0.mdl 'ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:data/train/split8/1/utt2spk scp:data/train/split8/1/cmvn.scp "scp:head -n 40 data/train/split8/1/feats.scp|" ark:- | splice-feats --left-context=3 --right-context=3 ark:- ark:- | transform-feats exp/tri5c_mpe/final.mat ark:- ark:- | transform-feats --utt2spk=ark:data/train/split8/1/utt2spk ark:exp/tri3b_ali/trans.1 ark:- ark:- |' 'ark,s,cs:gunzip -c exp/$dir_ali/ali.1.gz |' 'ark,s,cs:gunzip -c exp/$dir_denlats/lat.1.gz|' ark:2.egs # nnet-compare-hash-discriminative --acoustic-scale=$acoustic_scale --drop-frames=$drop_frames --criterion=$criterion exp/$dir/final.mdl ark:1.egs ark:2.egs || exit 1; # done # done # ) |