Blame view

egs/rm/s5/local/online/run_nnet2.sh 5.73 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  #!/bin/bash
  
  . ./cmd.sh
  
  
  stage=1
  train_stage=-10
  use_gpu=true
  dir=exp/nnet2_online/nnet_a
  
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    num_threads=16
    minibatch_size=128
    parallel_opts="--num-threads $num_threads"
  fi
  
  
  # stages 1 through 3 run in run_nnet2_common.sh.
  
  local/online/run_nnet2_common.sh --stage  $stage || exit 1;
  
  
  if [ $stage -le 4 ]; then
    steps/nnet2/train_pnorm_simple2.sh --stage $train_stage \
      --splice-width 7 \
      --feat-type raw \
      --online-ivector-dir exp/nnet2_online/ivectors \
      --cmvn-opts "--norm-means=false --norm-vars=false" \
      --num-threads "$num_threads" \
      --minibatch-size "$minibatch_size" \
      --parallel-opts "$parallel_opts" \
      --num-jobs-nnet 4 \
      --num-epochs 25 \
      --add-layers-period 1 \
      --num-hidden-layers 2 \
      --mix-up 4000 \
      --initial-learning-rate 0.02 --final-learning-rate 0.004 \
      --cmd "$decode_cmd" \
      --pnorm-input-dim 1000 \
      --pnorm-output-dim 200 \
      data/train data/lang exp/tri3b_ali $dir  || exit 1;
  fi
  
  if [ $stage -le 5 ]; then
    steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
      data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
  fi
  
  
  if [ $stage -le 6 ]; then
    # Note: comparing the results of this with run_online_decoding_nnet2_baseline.sh,
    # it's a bit worse, meaning the iVectors seem to hurt at this amount of data.
    # However, experiments by Haihua Xu (not checked in yet) on WSJ, show it helping
    # nicely.  This setup seems to have too little data for it to work, but it suffices
    # to demonstrate the scripts.   We will likely modify it to add noise to the
    # iVectors in training, which will tend to mitigate the over-training.
    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --online-ivector-dir exp/nnet2_online/ivectors_test \
      exp/tri3b/graph data/test $dir/decode  &
  
    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --online-ivector-dir exp/nnet2_online/ivectors_test \
      exp/tri3b/graph_ug data/test $dir/decode_ug || exit 1;
  
    wait
  fi
  
  if [ $stage -le 7 ]; then
    # If this setup used PLP features, we'd have to give the option --feature-type plp
    # to the script below.
    steps/online/nnet2/prepare_online_decoding.sh data/lang exp/nnet2_online/extractor \
      "$dir" ${dir}_online || exit 1;
  fi
  
  if [ $stage -le 8 ]; then
    # do the actual online decoding with iVectors.
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph data/test ${dir}_online/decode &
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph_ug data/test ${dir}_online/decode_ug || exit 1;
    wait
  fi
  
  if [ $stage -le 9 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --per-utt true \
      exp/tri3b/graph data/test ${dir}_online/decode_per_utt &
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      --per-utt true \
      exp/tri3b/graph_ug data/test ${dir}_online/decode_ug_per_utt || exit 1;
    wait
  fi
  
  exit 0;
  
  
  # the experiment (with GPU)
  #for x in exp/nnet2_online/nnet_a/decode*; do grep WER $x/wer_* | utils/best_wer.sh; done
  %WER 2.20 [ 276 / 12533, 37 ins, 61 del, 178 sub ] exp/nnet2_online/nnet_a/decode/wer_5
  %WER 10.22 [ 1281 / 12533, 143 ins, 193 del, 945 sub ] exp/nnet2_online/nnet_a/decode_ug/wer_10
  
  # This is the baseline with spliced non-CMVN cepstra and no iVector input.
  # The difference is pretty small on RM; I expect it to be more clear-cut on larger corpora.
  %WER 2.30 [ 288 / 12533, 35 ins, 57 del, 196 sub ] exp/nnet2_online/nnet_gpu_baseline/decode/wer_5
  %WER 10.98 [ 1376 / 12533, 121 ins, 227 del, 1028 sub ] exp/nnet2_online/nnet_gpu_baseline/decode_ug/wer_10
   # and this is the same (baseline) using truly-online decoding; it probably only differs because
   # of slight decoding-parameter differences.
   %WER 2.31 [ 290 / 12533, 34 ins, 57 del, 199 sub ] exp/nnet2_online/nnet_gpu_baseline_online/decode/wer_5
   %WER 10.93 [ 1370 / 12533, 142 ins, 202 del, 1026 sub ] exp/nnet2_online/nnet_gpu_baseline_online/decode_ug/wer_9
  
  
  # This is the online decoding.
  # This truly-online per-utterance decoding gives essentially the same WER as the offline decoding, which is
  # as we expect as the features and decoding parameters are the same.
  # for x in exp/nnet2_online/nnet_gpu_online/decode*utt; do grep WER $x/wer_* | utils/best_wer.sh; done
  %WER 2.28 [ 286 / 12533, 66 ins, 39 del, 181 sub ] exp/nnet2_online/nnet_a_online/decode_per_utt/wer_2
  %WER 10.45 [ 1310 / 12533, 106 ins, 241 del, 963 sub ] exp/nnet2_online/nnet_a_online/decode_ug_per_utt/wer_12
  
  # The following are online decoding, as above, but using previous utterances of
  # the same speaker to refine the adaptation state.  It doesn't make much difference.
  # for x in exp/nnet2_online/nnet_gpu_online/decode*; do grep WER $x/wer_* | utils/best_wer.sh; done | grep -v utt
  %WER 2.27 [ 285 / 12533, 42 ins, 62 del, 181 sub ] exp/nnet2_online/nnet_a_online/decode/wer_5
  %WER 10.26 [ 1286 / 12533, 140 ins, 188 del, 958 sub ] exp/nnet2_online/nnet_a_online/decode_ug/wer_10