Blame view
egs/rm/s5/local/online/run_nnet2_baseline.sh
2.49 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
#!/bin/bash # this is a baseline for ./run_nnet2.sh, without # the iVectors, to see whether they make a difference. . ./cmd.sh stage=1 train_stage=-10 use_gpu=true dir=exp/nnet2_online/nnet_a_baseline . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" fi if [ $stage -le 1 ]; then steps/nnet2/train_pnorm_simple.sh --stage $train_stage \ --splice-width 7 \ --feat-type raw \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --num-jobs-nnet 4 \ --num-epochs 25 \ --add-layers-period 1 \ --num-hidden-layers 2 \ --mix-up 4000 \ --initial-learning-rate 0.02 --final-learning-rate 0.004 \ --cmd "$decode_cmd" \ --pnorm-input-dim 1000 \ --pnorm-output-dim 200 \ data/train data/lang exp/tri3b_ali $dir || exit 1; fi if [ $stage -le 2 ]; then steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ exp/tri3b/graph data/test $dir/decode & steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ exp/tri3b/graph_ug data/test $dir/decode_ug || exit 1; wait fi if [ $stage -le 3 ]; then # If this setup used PLP features, we'd have to give the option --feature-type plp # to the script below. steps/online/nnet2/prepare_online_decoding.sh data/lang "$dir" ${dir}_online || exit 1; fi if [ $stage -le 4 ]; then # Doing the real online decoding. The --per-utt true option actually # makes no difference to the output as there is no adaptation at all. steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --per-utt true exp/tri3b/graph data/test ${dir}_online/decode & steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --per-utt true exp/tri3b/graph_ug data/test ${dir}_online/decode_ug || exit 1; wait fi # for results, see the end of ./run_nnet2.sh |