Blame view
egs/rm/s5/local/online/run_nnet2_multisplice_disc.sh
3.25 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
#!/bin/bash # This is to be run after run_nnet2_multisplice.sh. # It demonstrates discriminative training for the online-nnet2 models . ./cmd.sh stage=1 train_stage=-10 use_gpu=true srcdir=exp/nnet2_online/nnet_ms_a_online criterion=smbr learning_rate=0.0016 drop_frames=false # only relevant for MMI . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if [ ! -f $srcdir/final.mdl ]; then echo "$0: expected $srcdir/final.mdl to exist; first run run_nnet2_multisplice.sh." exit 1; fi if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 parallel_opts="--num-threads $num_threads" fi if [ $stage -le 1 ]; then # the conf/decode.config gives it higher than normal beam/lattice-beam of (20,10), since # otherwise on RM we'd get very thin lattices. nj=30 num_threads_denlats=6 steps/online/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G --num-threads $num_threads_denlats" \ --nj $nj --sub-split 40 --num-threads "$num_threads_denlats" --config conf/decode.config \ data/train data/lang $srcdir ${srcdir}_denlats || exit 1; fi if [ $stage -le 2 ]; then # hardcode no-GPU for alignment, although you could use GPU [you wouldn't # get excellent GPU utilization though.] nj=100 use_gpu=no gpu_opts= steps/online/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" --use-gpu "$use_gpu" \ --nj $nj data/train data/lang $srcdir ${srcdir}_ali || exit 1; fi if [ $stage -le 3 ]; then # I tested the following with --max-temp-archives 3 # to test other branches of the code. # the --max-jobs-run 5 limits the I/O. steps/online/nnet2/get_egs_discriminative2.sh \ --cmd "$decode_cmd --max-jobs-run 5" \ --criterion $criterion --drop-frames $drop_frames \ data/train data/lang ${srcdir}{_ali,_denlats,,_degs} || exit 1; fi if [ $stage -le 4 ]; then steps/nnet2/train_discriminative2.sh --cmd "$decode_cmd $parallel_opts" \ --learning-rate $learning_rate \ --criterion $criterion --drop-frames $drop_frames \ --num-epochs 6 \ --num-jobs-nnet 2 --num-threads $num_threads \ ${srcdir}_degs ${srcdir}_${criterion}_${learning_rate} || exit 1; fi if [ $stage -le 5 ]; then ln -sf $(utils/make_absolute.sh $srcdir/conf) ${srcdir}_${criterion}_${learning_rate}/conf # so it acts like an online-decoding directory for epoch in 0 1 2 3 4 5 6; do steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --iter epoch$epoch exp/tri3b/graph data/test ${srcdir}_${criterion}_${learning_rate}/decode_epoch$epoch & steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --iter epoch$epoch exp/tri3b/graph_ug data/test ${srcdir}_${criterion}_${learning_rate}/decode_ug_epoch$epoch & done wait for dir in ${srcdir}_${criterion}_${learning_rate}/decode*; do grep WER $dir/wer_* | utils/best_wer.sh; done fi |