Blame view

egs/rm/s5/local/online/run_nnet2_wsj_joint.sh 3.89 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  #!/bin/bash
  
  # This is the latest version of training that combines RM and WSJ, in a setup where
  # there are no shared phones (so it's like a multilingual setup).
  # Before running this script, go to ../../wsj/s5, and after running
  # the earlier stages in the run.sh (so the baseline SAT system is built),
  # run the following:
  #
  # local/online/run_nnet2.sh --stage 8 --dir exp/nnet2_online/nnet_ms_a_partial --exit-train-stage 15
  #
  # (you may want to keep --stage 8 on the above command line after run_nnet2.sh,
  # in case you already ran some scripts in local/online/ in ../../wsj/s5/ and
  # the earlier stages are finished, otherwise remove it).
  
  
  stage=0
  train_stage=-10
  srcdir=../../wsj/s5/exp/nnet2_online/nnet_ms_a_partial
  src_alidir=../../wsj/s5/exp/tri4b_ali_si284   # it's important that this be the alignments
                                                # we actually trained srcdir on.
  src_lang=../../wsj/s5/data/lang
  dir=exp/nnet2_online_wsj/nnet_ms_a
  use_gpu=true
  set -e
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
  else
    num_threads=16
    minibatch_size=128
    parallel_opts="--num-threads $num_threads"
  fi
  
  # Check inputs.
  for f in $srcdir/egs/egs.1.ark $srcdir/egs/info/egs_per_archive \
      ${srcdir}_online/final.mdl $src_alidir/ali.1.gz; do
    [ ! -f $f ] && echo "$0: expected file $f to exist." && exit 1;
  done
  
  if ! cmp $srcdir/tree $src_alidir/tree; then
    echo "$0: trees in $srcdir and $src_alidir do not match"
    exit 1;
  fi
  
  if [ $stage -le 0 ]; then
    steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train data/train_max2
  fi
  
  if [ $stage -le 1 ]; then
    echo "$0: dumping egs for RM data"
    steps/online/nnet2/get_egs2.sh --cmd "$train_cmd" \
      data/train_max2 exp/tri3b_ali ${srcdir}_online ${dir}/egs
  fi
  
  if [ $stage -le 2 ]; then
    echo "$0: doing the multilingual training."
  
    # 4 jobs for WSJ, 1 for RM; this affects the data weighting.  num-epochs is for
    # first one (WSJ).
    # the script said this:
    # steps/nnet2/train_multilang2.sh: Will train for 7 epochs (of language 0) = 140 iterations
    # steps/nnet2/train_multilang2.sh: 140 iterations is approximately 35 epochs for language 1
  
    # note: the arguments to the --mix-up option are (number of mixtures for WSJ,
    # number of mixtures for RM).  We just use fairly typical numbers for each
    # (although a bit fewer for WSJ, since we're not so concerned about the
    # performance of that system).
  
    steps/nnet2/train_multilang2.sh --num-jobs-nnet "4 1" \
      --stage $train_stage \
      --mix-up "10000 4000" \
      --cleanup false --num-epochs 7 \
      --initial-learning-rate 0.01 --final-learning-rate 0.001 \
      --cmd "$train_cmd" --parallel-opts "$parallel_opts" --num-threads "$num_threads" \
      $src_alidir $srcdir/egs exp/tri3b_ali $dir/egs ${srcdir}_online/final.mdl $dir
  fi
  
  
  if [ $stage -le 3 ]; then
    # Prepare the RM and WSJ setups for decoding, with config files
    # (for WSJ, we need the config files for discriminative training).
  
    steps/online/nnet2/prepare_online_decoding_transfer.sh \
      ${srcdir}_online $src_lang $dir/0 ${dir}_wsj_online
  
    steps/online/nnet2/prepare_online_decoding_transfer.sh \
      ${srcdir}_online data/lang $dir/1 ${dir}_rm_online
  fi
  
  if [ $stage -le 4 ]; then
    # do the actual online decoding with iVectors.
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph data/test ${dir}_rm_online/decode &
    steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \
      exp/tri3b/graph_ug data/test ${dir}_rm_online/decode_ug || exit 1;
    wait
  fi
  
  exit 0;