Blame view
egs/sitw/v1/run.sh
12.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/bin/bash # Copyright 2017 Johns Hopkins University (Author: Daniel Garcia-Romero) # 2017 Johns Hopkins University (Author: Daniel Povey) # 2017-2018 David Snyder # 2018 Ewald Enzinger # Apache 2.0. # # This is an i-vector-based recipe for Speakers in the Wild (SITW). # See ../README.txt for more info on data required. The recipe uses # VoxCeleb 1 and 2 for training the UBM and T matrix, and an augmented # version of those datasets for PLDA training. The augmentation consists # of MUSAN noises, music, and babble and reverberation from the Room # Impulse Response and Noise Database. Note that there are 60 speakers # in VoxCeleb 1 that overlap with our evaluation dataset, SITW. The recipe # removes those 60 speakers prior to training. See ../README.txt for more # info on data required. The results are reported in terms of EER and minDCF, # and are inline in the comments below. . ./cmd.sh . ./path.sh set -e mfccdir=`pwd`/mfcc vaddir=`pwd`/mfcc voxceleb1_root=/export/corpora/VoxCeleb1 voxceleb2_root=/export/corpora/VoxCeleb2 sitw_root=/export/corpora/SRI/sitw musan_root=/export/corpora/JHU/musan sitw_dev_trials_core=data/sitw_dev_test/trials/core-core.lst sitw_eval_trials_core=data/sitw_eval_test/trials/core-core.lst stage=0 if [ $stage -le 0 ]; then # Prepare the VoxCeleb1 dataset. The script also downloads a list from # http://www.openslr.org/resources/49/voxceleb1_sitw_overlap.txt that # contains the speakers that overlap between VoxCeleb1 and our evaluation # set SITW. The script removes the overlapping speakers from VoxCeleb1. local/make_voxceleb1.pl $voxceleb1_root data # Prepare the dev portion of the VoxCeleb2 dataset. local/make_voxceleb2.pl $voxceleb2_root dev data/voxceleb2_train # The original version of this recipe included the test portion of VoxCeleb2 # in the training list. Unfortunately, it turns out that there's an overlap # with our evaluation set, Speakers in the Wild. Therefore, we've removed # this dataset from the training list. # local/make_voxceleb2.pl $voxceleb2_root test data/voxceleb2_test # We'll train on all of VoxCeleb2, plus the training portion of VoxCeleb1. # This should leave 7,185 speakers and 1,236,567 utterances. utils/combine_data.sh data/train data/voxceleb2_train data/voxceleb1 # Prepare Speakers in the Wild. This is our evaluation dataset. local/make_sitw.sh $sitw_root data fi if [ $stage -le 1 ]; then # Make MFCCs and compute the energy-based VAD for each dataset for name in sitw_eval_enroll sitw_eval_test sitw_dev_enroll sitw_dev_test train; do steps/make_mfcc.sh --write-utt2num-frames true --mfcc-config conf/mfcc.conf --nj 80 --cmd "$train_cmd" \ data/${name} exp/make_mfcc $mfccdir utils/fix_data_dir.sh data/${name} sid/compute_vad_decision.sh --nj 80 --cmd "$train_cmd" \ data/${name} exp/make_vad $vaddir utils/fix_data_dir.sh data/${name} done fi if [ $stage -le 2 ]; then # Train the UBM on VoxCeleb 1 and 2. sid/train_diag_ubm.sh --cmd "$train_cmd --mem 4G" \ --nj 40 --num-threads 8 \ data/train 2048 \ exp/diag_ubm sid/train_full_ubm.sh --cmd "$train_cmd --mem 25G" \ --nj 40 --remove-low-count-gaussians false \ data/train \ exp/diag_ubm exp/full_ubm fi if [ $stage -le 3 ]; then # In this stage, we train the i-vector extractor on a subset of VoxCeleb 1 # and 2. # # Note that there are well over 1 million utterances in our training set, # and it takes an extremely long time to train the extractor on all of this. # Also, most of those utterances are very short. Short utterances are # harmful for training the i-vector extractor. Therefore, to reduce the # training time and improve performance, we will only train on the 100k # longest utterances. utils/subset_data_dir.sh \ --utt-list <(sort -n -k 2 data/train/utt2num_frames | tail -n 100000) \ data/train data/train_100k # Train the i-vector extractor. sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 16G" \ --ivector-dim 400 --num-iters 5 \ exp/full_ubm/final.ubm data/train_100k \ exp/extractor fi # In this section, we augment the VoxCeleb 1 and 2 data with reverberation, # noise, music, and babble, and combine it with the clean data. This will # later be used to train out PLDA model. if [ $stage -le 4 ]; then frame_shift=0.01 awk -v frame_shift=$frame_shift '{print $1, $2*frame_shift;}' data/train_100k/utt2num_frames > data/train_100k/reco2dur if [ ! -d "RIRS_NOISES" ]; then # Download the package that includes the real RIRs, simulated RIRs, isotropic noises and point-source noises wget --no-check-certificate http://www.openslr.org/resources/28/rirs_noises.zip unzip rirs_noises.zip fi # Make a version with reverberated speech rvb_opts=() rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/smallroom/rir_list") rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/mediumroom/rir_list") # Make a reverberated version of the VoxCeleb2 list. Note that we don't add any # additive noise here. steps/data/reverberate_data_dir.py \ "${rvb_opts[@]}" \ --speech-rvb-probability 1 \ --pointsource-noise-addition-probability 0 \ --isotropic-noise-addition-probability 0 \ --num-replications 1 \ --source-sampling-rate 16000 \ data/train_100k data/train_100k_reverb cp data/train_100k/vad.scp data/train_100k_reverb/ utils/copy_data_dir.sh --utt-suffix "-reverb" data/train_100k_reverb data/train_100k_reverb.new rm -rf data/train_100k_reverb mv data/train_100k_reverb.new data/train_100k_reverb # Prepare the MUSAN corpus, which consists of music, speech, and noise # suitable for augmentation. steps/data/make_musan.sh --sampling-rate 16000 $musan_root data # Get the duration of the MUSAN recordings. This will be used by the # script augment_data_dir.py. for name in speech noise music; do utils/data/get_utt2dur.sh data/musan_${name} mv data/musan_${name}/utt2dur data/musan_${name}/reco2dur done # Augment with musan_noise steps/data/augment_data_dir.py --utt-suffix "noise" --fg-interval 1 --fg-snrs "15:10:5:0" --fg-noise-dir "data/musan_noise" data/train_100k data/train_100k_noise # Augment with musan_music steps/data/augment_data_dir.py --utt-suffix "music" --bg-snrs "15:10:8:5" --num-bg-noises "1" --bg-noise-dir "data/musan_music" data/train_100k data/train_100k_music # Augment with musan_speech steps/data/augment_data_dir.py --utt-suffix "babble" --bg-snrs "20:17:15:13" --num-bg-noises "3:4:5:6:7" --bg-noise-dir "data/musan_speech" data/train_100k data/train_100k_babble # Combine reverb, noise, music, and babble into one directory. utils/combine_data.sh data/train_aug data/train_100k_reverb data/train_100k_noise data/train_100k_music data/train_100k_babble fi if [ $stage -le 5 ]; then # Take a 100k subset of the augmentations. utils/subset_data_dir.sh data/train_aug 100000 data/train_100k_aug utils/fix_data_dir.sh data/train_100k_aug # Make MFCCs for the augmented data. Note that we do not compute a new # vad.scp file here. Instead, we use the vad.scp from the clean version of # the list. steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 80 --cmd "$train_cmd" \ data/train_100k_aug exp/make_mfcc $mfccdir # Combine the clean and augmented VoxCeleb list. This is now roughly # double the size of the original clean list. utils/combine_data.sh data/train_combined_200k data/train_100k_aug data/train_100k fi if [ $stage -le 6 ]; then # These i-vectors will be used for mean-subtraction, LDA, and PLDA training. sid/extract_ivectors.sh --cmd "$train_cmd --mem 4G" --nj 80 \ exp/extractor data/train_combined_200k \ exp/ivectors_train_combined_200k # Extract i-vectors for the SITW dev and eval sets. for name in sitw_eval_enroll sitw_eval_test sitw_dev_enroll sitw_dev_test; do sid/extract_ivectors.sh --cmd "$train_cmd --mem 4G" --nj 40 \ exp/extractor data/$name \ exp/ivectors_$name done fi if [ $stage -le 7 ]; then # Compute the mean vector for centering the evaluation i-vectors. $train_cmd exp/ivectors_train_combined_200k/log/compute_mean.log \ ivector-mean scp:exp/ivectors_train_combined_200k/ivector.scp \ exp/ivectors_train_combined_200k/mean.vec || exit 1; # This script uses LDA to decrease the dimensionality prior to PLDA. lda_dim=150 $train_cmd exp/ivectors_train_combined_200k/log/lda.log \ ivector-compute-lda --total-covariance-factor=0.0 --dim=$lda_dim \ "ark:ivector-subtract-global-mean scp:exp/ivectors_train_combined_200k/ivector.scp ark:- |" \ ark:data/train_combined_200k/utt2spk exp/ivectors_train_combined_200k/transform.mat || exit 1; # Train the PLDA model. $train_cmd exp/ivectors_train_combined_200k/log/plda.log \ ivector-compute-plda ark:data/train_combined_200k/spk2utt \ "ark:ivector-subtract-global-mean scp:exp/ivectors_train_combined_200k/ivector.scp ark:- | transform-vec exp/ivectors_train_combined_200k/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \ exp/ivectors_train_combined_200k/plda || exit 1; fi if [ $stage -le 8 ]; then # Compute PLDA scores for SITW dev core-core trials $train_cmd exp/scores/log/sitw_dev_core_scoring.log \ ivector-plda-scoring --normalize-length=true \ --num-utts=ark:exp/ivectors_sitw_dev_enroll/num_utts.ark \ "ivector-copy-plda --smoothing=0.0 exp/ivectors_train_combined_200k/plda - |" \ "ark:ivector-mean ark:data/sitw_dev_enroll/spk2utt scp:exp/ivectors_sitw_dev_enroll/ivector.scp ark:- | ivector-subtract-global-mean exp/ivectors_train_combined_200k/mean.vec ark:- ark:- | transform-vec exp/ivectors_train_combined_200k/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \ "ark:ivector-subtract-global-mean exp/ivectors_train_combined_200k/mean.vec scp:exp/ivectors_sitw_dev_test/ivector.scp ark:- | transform-vec exp/ivectors_train_combined_200k/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \ "cat '$sitw_dev_trials_core' | cut -d\ --fields=1,2 |" exp/scores/sitw_dev_core_scores || exit 1; # SITW Dev Core: # EER: 4.813% # minDCF(p-target=0.01): 0.4250 # minDCF(p-target=0.001): 0.5727 echo "SITW Dev Core:" eer=$(paste $sitw_dev_trials_core exp/scores/sitw_dev_core_scores | awk '{print $6, $3}' | compute-eer - 2>/dev/null) mindcf1=`sid/compute_min_dcf.py --p-target 0.01 exp/scores/sitw_dev_core_scores $sitw_dev_trials_core 2> /dev/null` mindcf2=`sid/compute_min_dcf.py --p-target 0.001 exp/scores/sitw_dev_core_scores $sitw_dev_trials_core 2> /dev/null` echo "EER: $eer%" echo "minDCF(p-target=0.01): $mindcf1" echo "minDCF(p-target=0.001): $mindcf2" fi if [ $stage -le 9 ]; then # Compute PLDA scores for SITW eval core-core trials $train_cmd exp/scores/log/sitw_eval_core_scoring.log \ ivector-plda-scoring --normalize-length=true \ --num-utts=ark:exp/ivectors_sitw_eval_enroll/num_utts.ark \ "ivector-copy-plda --smoothing=0.0 exp/ivectors_train_combined_200k/plda - |" \ "ark:ivector-mean ark:data/sitw_eval_enroll/spk2utt scp:exp/ivectors_sitw_eval_enroll/ivector.scp ark:- | ivector-subtract-global-mean exp/ivectors_train_combined_200k/mean.vec ark:- ark:- | transform-vec exp/ivectors_train_combined_200k/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \ "ark:ivector-subtract-global-mean exp/ivectors_train_combined_200k/mean.vec scp:exp/ivectors_sitw_eval_test/ivector.scp ark:- | transform-vec exp/ivectors_train_combined_200k/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \ "cat '$sitw_eval_trials_core' | cut -d\ --fields=1,2 |" exp/scores/sitw_eval_core_scores || exit 1; # SITW Eval Core: # EER: 5.659% # minDCF(p-target=0.01): 0.4637 # minDCF(p-target=0.001): 0.6290 echo -e " SITW Eval Core:"; eer=$(paste $sitw_eval_trials_core exp/scores/sitw_eval_core_scores | awk '{print $6, $3}' | compute-eer - 2>/dev/null) mindcf1=`sid/compute_min_dcf.py --p-target 0.01 exp/scores/sitw_eval_core_scores $sitw_eval_trials_core 2> /dev/null` mindcf2=`sid/compute_min_dcf.py --p-target 0.001 exp/scores/sitw_eval_core_scores $sitw_eval_trials_core 2> /dev/null` echo "EER: $eer%" echo "minDCF(p-target=0.01): $mindcf1" echo "minDCF(p-target=0.001): $mindcf2" fi |