Blame view
egs/sprakbanken/s5/local/nnet3/run_ivector_common.sh
9.64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
#!/bin/bash set -e -o pipefail # This script is called from local/nnet3/run_tdnn.sh and local/chain/run_tdnn.sh (and may eventually # be called by more scripts). It contains the common feature preparation and iVector-related parts # of the script. See those scripts for examples of usage. stage=0 nj=30 min_seg_len=1.55 # min length in seconds... we do this because chain training # will discard segments shorter than 1.5 seconds. Must remain in sync # with the same option given to prepare_lores_feats_and_alignments.sh train_set=train # you might set this to e.g. train. gmm=tri3b # This specifies a GMM-dir from the features of the type you're training the system on; # it should contain alignments for 'train_set'. num_threads_ubm=32 nnet3_affix=_n3 # affix for exp/nnet3 directory to put iVector stuff in, so it # becomes exp/nnet3_cleaned or whatever. . ./cmd.sh . ./path.sh . ./utils/parse_options.sh gmm_dir=exp/${gmm} ali_dir=exp/${gmm}_ali_${train_set}_sp_comb for f in data/${train_set}/feats.scp ${gmm_dir}/final.mdl; do if [ ! -f $f ]; then echo "$0: expected file $f to exist" exit 1 fi done if [ $stage -le 2 ] && [ -f data/${train_set}_sp_hires/feats.scp ]; then echo "$0: data/${train_set}_sp_hires/feats.scp already exists." echo " ... Please either remove it, or rerun this script with stage > 2." exit 1 fi if [ $stage -le 1 ]; then echo "$0: preparing directory for speed-perturbed data" utils/data/perturb_data_dir_speed_3way.sh data/${train_set} data/${train_set}_sp fi if [ $stage -le 2 ]; then echo "$0: creating high-resolution MFCC features" # this shows how you can split across multiple file-systems. we'll split the # MFCC dir across multiple locations. You might want to be careful here, if you # have multiple copies of Kaldi checked out and run the same recipe, not to let # them overwrite each other. mfccdir=data/${train_set}_sp_hires/data if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $mfccdir/storage ]; then utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/mfcc/sprakbanken-$(date +'%m_%d_%H_%M')/s5/$mfccdir/storage $mfccdir/storage fi for datadir in ${train_set}_sp dev test; do utils/copy_data_dir.sh data/$datadir data/${datadir}_hires done # do volume-perturbation on the training data prior to extracting hires # features; this helps make trained nnets more invariant to test data volume. utils/data/perturb_data_dir_volume.sh data/${train_set}_sp_hires for datadir in ${train_set}_sp dev test; do steps/make_mfcc.sh --nj $nj --mfcc-config conf/mfcc_hires.conf \ --cmd "$train_cmd" data/${datadir}_hires steps/compute_cmvn_stats.sh data/${datadir}_hires utils/fix_data_dir.sh data/${datadir}_hires done fi if [ $stage -le 3 ]; then echo "$0: combining short segments of speed-perturbed high-resolution MFCC training data" # we have to combine short segments or we won't be able to train chain models # on those segments. utils/data/combine_short_segments.sh \ data/${train_set}_sp_hires $min_seg_len data/${train_set}_sp_hires_comb # just copy over the CMVN to avoid having to recompute it. cp data/${train_set}_sp_hires/cmvn.scp data/${train_set}_sp_hires_comb/ utils/fix_data_dir.sh data/${train_set}_sp_hires_comb/ fi if [ $stage -le 4 ]; then echo "$0: selecting segments of hires training data that were also present in the" echo " ... original training data." # note, these data-dirs are temporary; we put them in a sub-directory # of the place where we'll make the alignments. temp_data_root=exp/nnet3${nnet3_affix}/tri5 mkdir -p $temp_data_root utils/data/subset_data_dir.sh --utt-list data/${train_set}/feats.scp \ data/${train_set}_sp_hires $temp_data_root/${train_set}_hires # note: essentially all the original segments should be in the hires data. n1=$(wc -l <data/${train_set}/feats.scp) n2=$(wc -l <$temp_data_root/${train_set}_hires/feats.scp) if [ $n1 != $n2 ]; then echo "$0: warning: number of feats $n1 != $n2, if these are very different it could be bad." fi echo "$0: training a system on the hires data for its LDA+MLLT transform, in order to produce the diagonal GMM." if [ -e exp/nnet3${nnet3_affix}/tri5/final.mdl ]; then # we don't want to overwrite old stuff, ask the user to delete it. echo "$0: exp/nnet3${nnet3_affix}/tri5/final.mdl already exists: " echo " ... please delete and then rerun, or use a later --stage option." exit 1; fi steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 7 --mllt-iters "2 4 6" \ --splice-opts "--left-context=3 --right-context=3" \ 3000 10000 $temp_data_root/${train_set}_hires data/lang \ $gmm_dir exp/nnet3${nnet3_affix}/tri5 fi if [ $stage -le 5 ]; then echo "$0: computing a subset of data to train the diagonal UBM." mkdir -p exp/nnet3${nnet3_affix}/diag_ubm temp_data_root=exp/nnet3${nnet3_affix}/diag_ubm # train a diagonal UBM using a subset of about a quarter of the data # we don't use the _comb data for this as there is no need for compatibility with # the alignments, and using the non-combined data is more efficient for I/O # (no messing about with piped commands). num_utts_total=$(wc -l <data/${train_set}_sp_hires/utt2spk) num_utts=$[$num_utts_total/4] utils/data/subset_data_dir.sh data/${train_set}_sp_hires \ $num_utts ${temp_data_root}/${train_set}_sp_hires_subset echo "$0: training the diagonal UBM." # Use 512 Gaussians in the UBM. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 \ --num-frames 700000 \ --num-threads $num_threads_ubm \ ${temp_data_root}/${train_set}_sp_hires_subset 512 \ exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm fi if [ $stage -le 6 ]; then # Train the iVector extractor. Use all of the speed-perturbed data since iVector extractors # can be sensitive to the amount of data. The script defaults to an iVector dimension of # 100. echo "$0: training the iVector extractor" steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/${train_set}_sp_hires exp/nnet3${nnet3_affix}/diag_ubm exp/nnet3${nnet3_affix}/extractor || exit 1; fi if [ $stage -le 7 ]; then # note, we don't encode the 'max2' in the name of the ivectordir even though # that's the data we extract the ivectors from, as it's still going to be # valid for the non-'max2' data, the utterance list is the same. ivectordir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $ivectordir/storage ]; then utils/create_split_dir.pl /export/b0{5,6,7,8}/$USER/kaldi-data/ivectors/sprakbanken-$(date +'%m_%d_%H_%M')/s5/$ivectordir/storage $ivectordir/storage fi # We extract iVectors on the speed-perturbed training data after combining # short segments, which will be what we train the system on. With # --utts-per-spk-max 2, the script pairs the utterances into twos, and treats # each of these pairs as one speaker; this gives more diversity in iVectors.. # Note that these are extracted 'online'. # having a larger number of speakers is helpful for generalization, and to # handle per-utterance decoding well (iVector starts at zero). temp_data_root=${ivectordir} utils/data/modify_speaker_info.sh --utts-per-spk-max 2 \ data/${train_set}_sp_hires_comb ${temp_data_root}/${train_set}_sp_hires_comb_max2 steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $nj \ ${temp_data_root}/${train_set}_sp_hires_comb_max2 \ exp/nnet3${nnet3_affix}/extractor $ivectordir # Also extract iVectors for the test data, but in this case we don't need the speed # perturbation (sp) or small-segment concatenation (comb). for data in test dev; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 7 \ data/${data}_hires exp/nnet3${nnet3_affix}/extractor \ exp/nnet3${nnet3_affix}/ivectors_${data}_hires done fi if [ -f data/${train_set}_sp/feats.scp ] && [ $stage -le 9 ]; then echo "$0: $feats already exists. Refusing to overwrite the features " echo " to avoid wasting time. Please remove the file and continue if you really mean this." exit 1; fi if [ $stage -le 8 ]; then echo "$0: preparing directory for low-resolution speed-perturbed data (for alignment)" utils/data/perturb_data_dir_speed_3way.sh \ data/${train_set} data/${train_set}_sp fi if [ $stage -le 9 ]; then echo "$0: making MFCC features for low-resolution speed-perturbed data" steps/make_mfcc.sh --nj $nj \ --cmd "$train_cmd" data/${train_set}_sp steps/compute_cmvn_stats.sh data/${train_set}_sp echo "$0: fixing input data-dir to remove nonexistent features, in case some " echo ".. speed-perturbed segments were too short." utils/fix_data_dir.sh data/${train_set}_sp fi if [ $stage -le 10 ]; then echo "$0: combining short segments of low-resolution speed-perturbed MFCC data" src=data/${train_set}_sp dest=data/${train_set}_sp_comb utils/data/combine_short_segments.sh $src $min_seg_len $dest # re-use the CMVN stats from the source directory, since it seems to be slow to # re-compute them after concatenating short segments. cp $src/cmvn.scp $dest/ utils/fix_data_dir.sh $dest fi if [ $stage -le 11 ]; then if [ -f $ali_dir/ali.1.gz ]; then echo "$0: alignments in $ali_dir appear to already exist. Please either remove them " echo " ... or use a later --stage option." exit 1 fi echo "$0: aligning with the perturbed, short-segment-combined low-resolution data" steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ data/${train_set}_sp_comb data/lang $gmm_dir $ali_dir fi exit 0; |