Blame view
egs/sre08/v1/local/run_more_data.sh
12.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#!/bin/bash # Copyright 2013 Daniel Povey # Apache 2.0. # # See README.txt for more info on data required. # Results (EERs) are inline in comments below. # This example script is still a bit of a mess, and needs to be # cleaned up, but it shows you all the basic ingredients. . ./cmd.sh . ./path.sh set -e mfccdir=`pwd`/mfcc vaddir=`pwd`/mfcc local/make_fisher.sh /export/corpora3/LDC/{LDC2004S13,LDC2004T19} data/fisher1 #Processed 4948 utterances; 902 had missing wav data. (note: we should figure #out why so much data goes missing.) local/make_fisher.sh /export/corpora3/LDC/{LDC2005S13,LDC2005T19} data/fisher2 #Processed 5848 utterances; 1 had missing wav data. local/make_sre_2008_train.pl /export/corpora5/LDC/LDC2011S05 data local/make_sre_2008_test.sh /export/corpora5/LDC/LDC2011S08 data local/make_sre_2006_train.pl /export/corpora5/LDC/LDC2011S09 data local/make_sre_2005_train.pl /export/corpora5/LDC/LDC2011S01 data local/make_swbd_cellular1.pl /export/corpora5/LDC/LDC2001S13 data/swbd_cellular1_train local/make_swbd_cellular2.pl /export/corpora5/LDC/LDC2004S07 data/swbd_cellular2_train utils/combine_data.sh data/train data/fisher1 data/fisher2 data/swbd_cellular1_train data/swbd_cellular2_train data/sre05_train_3conv4w_female data/sre05_train_8conv4w_female data/sre06_train_3conv4w_female data/sre06_train_8conv4w_female data/sre05_train_3conv4w_male data/sre05_train_8conv4w_male data/sre06_train_3conv4w_male data/sre06_train_8conv4w_male mfccdir=`pwd`/mfcc vaddir=`pwd`/mfcc set -e steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" data/train exp/make_mfcc $mfccdir steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" data/sre08_train_short2_female exp/make_mfcc $mfccdir steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" data/sre08_train_short2_male exp/make_mfcc $mfccdir steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" data/sre08_test_short3_female exp/make_mfcc $mfccdir steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" data/sre08_test_short3_male exp/make_mfcc $mfccdir sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/train exp/make_vad $vaddir sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/sre08_train_short2_female exp/make_vad $vaddir sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/sre08_train_short2_male exp/make_vad $vaddir sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/sre08_test_short3_female exp/make_vad $vaddir sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" data/sre08_test_short3_male exp/make_vad $vaddir # Note: to see the proportion of voiced frames you can do, # grep Prop exp/make_vad/vad_*.1.log # Get male and female subsets of training data. grep -w m data/train/spk2gender | awk '{print $1}' > foo; utils/subset_data_dir.sh --spk-list foo data/train data/train_male grep -w f data/train/spk2gender | awk '{print $1}' > foo; utils/subset_data_dir.sh --spk-list foo data/train data/train_female rm foo # Get smaller subsets of training data for faster training. utils/subset_data_dir.sh data/train 2000 data/train_2k utils/subset_data_dir.sh data/train 4000 data/train_4k utils/subset_data_dir.sh data/train_male 4000 data/train_male_4k utils/subset_data_dir.sh data/train_female 4000 data/train_female_4k sid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train_2k 2048 exp/diag_ubm_2048 sid/train_full_ubm.sh --nj 30 --cmd "$train_cmd" data/train_4k exp/diag_ubm_2048 exp/full_ubm_2048 # Get male and female versions of the UBM in one pass; make sure not to remove # any Gaussians due to low counts (so they stay matched). This will be more convenient # for gender-id. sid/train_full_ubm.sh --nj 30 --remove-low-count-gaussians false --num-iters 1 --cmd "$train_cmd" \ data/train_male_4k exp/full_ubm_2048 exp/full_ubm_2048_male & sid/train_full_ubm.sh --nj 30 --remove-low-count-gaussians false --num-iters 1 --cmd "$train_cmd" \ data/train_female_4k exp/full_ubm_2048 exp/full_ubm_2048_female & wait # note, the --mem is counted per thread... in this setup each # job has 4 processes running each with 4 threads; each job takes about 5G # of memory so we need about 20G, plus add memory for sum-accs to make it 25G. # but we'll submit using --num-threads 16, and this multiplies the memory requirement # by 16, so submitting with 2G as the requirement, to make the total requirement # 32, is reasonable. # Train the iVector extractor for male speakers. sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 2G" \ --num-iters 5 exp/full_ubm_2048_male/final.ubm data/train_male \ exp/extractor_2048_male # The same for female speakers. sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 2G" \ --num-iters 5 exp/full_ubm_2048_female/final.ubm data/train_female \ exp/extractor_2048_female # The script below demonstrates the gender-id script. We don't really use # it for anything here, because the SRE 2008 data is already split up by # gender and gender identification is not required for the eval. # It prints out the error rate based on the info in the spk2gender file; # see exp/gender_id_fisher/error_rate where it is also printed. sid/gender_id.sh --cmd "$train_cmd" --nj 150 exp/full_ubm_2048{,_male,_female} \ data/train exp/gender_id_train # Gender-id error rate is 2.58% # Extract the iVectors for the Fisher data. sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_male data/train_male exp/ivectors_train_male sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_female data/train_female exp/ivectors_train_female # .. and for the SRE08 training and test data. (We focus on the main # evaluation condition, the only required one in that eval, which is # the short2-short3 eval.) sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_female data/sre08_train_short2_female exp/ivectors_sre08_train_short2_female sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_male data/sre08_train_short2_male exp/ivectors_sre08_train_short2_male sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_female data/sre08_test_short3_female exp/ivectors_sre08_test_short3_female sid/extract_ivectors.sh --cmd "$train_cmd --mem 3G" --nj 50 \ exp/extractor_2048_male data/sre08_test_short3_male exp/ivectors_sre08_test_short3_male ### Demonstrate simple cosine-distance scoring: trials=data/sre08_trials/short2-short3-female.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp \ scp:exp/ivectors_sre08_test_short3_female/spk_ivector.scp \ foo local/score_sre08.sh $trials foo # Results for Female: # Scoring against data/sre08_trials/short2-short3-female.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 27.28 4.78 26.86 21.02 18.87 9.92 6.46 7.11 trials=data/sre08_trials/short2-short3-male.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp \ scp:exp/ivectors_sre08_test_short3_male/spk_ivector.scp \ foo local/score_sre08.sh $trials foo # Results for Male: # Scoring against data/sre08_trials/short2-short3-male.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 25.69 3.63 25.36 17.54 17.50 7.78 6.38 5.26 # The following shows a more direct way to get the scores. #condition=6 #awk '{print $3}' foo | paste - $trials | awk -v c=$condition '{n=4+c; if ($n == "Y") print $1, $4}' | \ # compute-eer - # LOG (compute-eer:main():compute-eer.cc:136) Equal error rate is 11.1419%, at threshold 55.9827 # Note: to see how you can plot the DET curve, look at # local/det_curve_example.sh ### Demonstrate what happens if we reduce the dimension with LDA ivector-compute-lda --dim=150 --total-covariance-factor=0.1 \ 'ark:ivector-normalize-length scp:exp/ivectors_train_female/ivector.scp ark:- |' ark:data/train_female/utt2spk \ exp/ivectors_train_female/transform.mat trials=data/sre08_trials/short2-short3-female.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ 'ark:ivector-transform exp/ivectors_train_female/transform.mat scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ 'ark:ivector-transform exp/ivectors_train_female/transform.mat scp:exp/ivectors_sre08_test_short3_female/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ foo local/score_sre08.sh $trials foo # Results for Female: # Scoring against data/sre08_trials/short2-short3-female.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 21.36 2.09 20.97 14.26 15.26 9.26 6.08 6.32 ivector-compute-lda --dim=150 --total-covariance-factor=0.1 \ 'ark:ivector-normalize-length scp:exp/ivectors_train_male/ivector.scp ark:- |' ark:data/train_male/utt2spk \ exp/ivectors_train_male/transform.mat trials=data/sre08_trials/short2-short3-male.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ 'ark:ivector-transform exp/ivectors_train_male/transform.mat scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ 'ark:ivector-transform exp/ivectors_train_male/transform.mat scp:exp/ivectors_sre08_test_short3_male/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ foo local/score_sre08.sh $trials foo # Results for Male: # Scoring against data/sre08_trials/short2-short3-male.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 18.10 1.61 18.03 11.39 11.25 7.44 5.92 3.95 ### Demonstrate PLDA scoring: ## Note: below, the ivector-subtract-global-mean step doesn't appear to affect ## the EER, although it does shift the threshold. trials=data/sre08_trials/short2-short3-female.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ 'ark:ivector-transform exp/ivectors_train_female/transform.mat scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ 'ark:ivector-transform exp/ivectors_train_female/transform.mat scp:exp/ivectors_sre08_test_short3_female/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ foo ivector-compute-plda ark:data/train_female/spk2utt \ 'ark:ivector-normalize-length scp:exp/ivectors_train_female/ivector.scp ark:- |' \ exp/ivectors_train_female/plda 2>exp/ivectors_train_female/log/plda.log ivector-plda-scoring --num-utts=ark:exp/ivectors_sre08_train_short2_female/num_utts.ark \ "ivector-copy-plda --smoothing=0.0 exp/ivectors_train_female/plda - |" \ "ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp ark:- |" \ "ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_test_short3_female/ivector.scp ark:- |" \ "cat '$trials' | awk '{print \$1, \$2}' |" foo local/score_sre08.sh $trials foo # Result for Female is below: # Scoring against data/sre08_trials/short2-short3-female.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 19.04 2.39 19.21 16.52 12.62 9.48 5.83 6.05 trials=data/sre08_trials/short2-short3-male.trials cat $trials | awk '{print $1, $2}' | \ ivector-compute-dot-products - \ 'ark:ivector-transform exp/ivectors_train_male/transform.mat scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ 'ark:ivector-transform exp/ivectors_train_male/transform.mat scp:exp/ivectors_sre08_test_short3_male/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \ foo ivector-compute-plda ark:data/train_male/spk2utt \ 'ark:ivector-normalize-length scp:exp/ivectors_train_male/ivector.scp ark:- |' \ exp/ivectors_train_male/plda 2>exp/ivectors_train_male/log/plda.log ivector-plda-scoring --num-utts=ark:exp/ivectors_sre08_train_short2_male/num_utts.ark \ "ivector-copy-plda --smoothing=0.0 exp/ivectors_train_male/plda - |" \ "ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp ark:- |" \ "ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_test_short3_male/ivector.scp ark:- |" \ "cat '$trials' | awk '{print \$1, \$2}' |" foo local/score_sre08.sh $trials foo # Result for Male is below: # Scoring against data/sre08_trials/short2-short3-male.trials # Condition: 1 2 3 4 5 6 7 8 # EER: 15.18 1.61 15.45 12.76 10.94 8.12 5.24 4.82 |