Blame view
egs/sre08/v1/sid/train_diag_ubm.sh
7.48 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # 2013 Daniel Povey # 2014 David Snyder # Apache 2.0. # This is a modified version of steps/train_diag_ubm.sh, specialized for # speaker-id, that does not require to start with a trained model, that applies # sliding-window CMVN, and that expects voice activity detection (vad.scp) in # the data directory. We initialize the GMM using gmm-global-init-from-feats, # which sets the means to random data points and then does some iterations of # E-M in memory. After the in-memory initialization we train for a few # iterations in parallel. # Begin configuration section. nj=4 cmd=run.pl num_iters=4 stage=-2 num_gselect=30 # Number of Gaussian-selection indices to use while training # the model. num_frames=500000 # number of frames to keep in memory for initialization num_iters_init=20 initial_gauss_proportion=0.5 # Start with half the target number of Gaussians subsample=5 # subsample all features with this periodicity, in the main E-M phase. cleanup=true min_gaussian_weight=0.0001 remove_low_count_gaussians=true # set this to false if you need #gauss to stay fixed. num_threads=32 delta_window=3 delta_order=2 apply_cmn=true # If true, apply sliding window cepstral mean normalization # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: $0 <data> <num-gauss> <output-dir>" echo " e.g.: $0 data/train 1024 exp/diag_ubm" echo "Options: " echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <num-jobs|4> # number of parallel jobs to run." echo " --num-iters <niter|20> # number of iterations of parallel " echo " # training (default: $num_iters)" echo " --stage <stage|-2> # stage to do partial re-run from." echo " --num-gselect <n|30> # Number of Gaussians per frame to" echo " # limit computation to, for speed" echo " --subsample <n|5> # In main E-M phase, use every n" echo " # frames (a speedup)" echo " --num-frames <n|500000> # Maximum num-frames to keep in memory" echo " # for model initialization" echo " --num-iters-init <n|20> # Number of E-M iterations for model" echo " # initialization" echo " --initial-gauss-proportion <proportion|0.5> # Proportion of Gaussians to start with" echo " # in initialization phase (then split)" echo " --num-threads <n|32> # number of threads to use in initialization" echo " # phase (must match with parallel-opts option)" echo " --parallel-opts <string|'--num-threads 32'> # Option should match number of threads in" echo " # --num-threads option above" echo " --min-gaussian-weight <weight|0.0001> # min Gaussian weight allowed in GMM" echo " # initialization (this relatively high" echo " # value keeps counts fairly even)" echo " --delta-window <n|3> # number of frames of context used to" echo " # calculate delta" echo " --delta-order <n|2> # number of delta features" echo " --apply-cmn <true,false|true> # if true, apply sliding window cepstral mean" echo " # normalization to features" exit 1; fi data=$1 num_gauss=$2 dir=$3 ! [ $num_gauss -gt 0 ] && echo "Bad num-gauss $num_gauss" && exit 1; sdata=$data/split$nj mkdir -p $dir/log utils/split_data.sh $data $nj || exit 1; for f in $data/feats.scp $data/vad.scp; do [ ! -f $f ] && echo "$0: expecting file $f to exist" && exit 1 done parallel_opts="--num-threads $num_threads" delta_opts="--delta-window=$delta_window --delta-order=$delta_order" echo $delta_opts > $dir/delta_opts # Note: there is no point subsampling all_feats, because gmm-global-init-from-feats # effectively does subsampling itself (it keeps a random subset of the features). if $apply_cmn; then all_feats="ark,s,cs:add-deltas $delta_opts scp:$data/feats.scp ark:- | apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$data/vad.scp ark:- |" feats="ark,s,cs:add-deltas $delta_opts scp:$sdata/JOB/feats.scp ark:- | apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |" else all_feats="ark,s,cs:add-deltas $delta_opts scp:$data/feats.scp ark:- | select-voiced-frames ark:- scp,s,cs:$data/vad.scp ark:- |" feats="ark,s,cs:add-deltas $delta_opts scp:$sdata/JOB/feats.scp ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |" fi num_gauss_init=$(perl -e "print int($initial_gauss_proportion * $num_gauss); "); ! [ $num_gauss_init -gt 0 ] && echo "Invalid num-gauss-init $num_gauss_init" && exit 1; if [ $stage -le -2 ]; then echo "$0: initializing model from E-M in memory, " echo "$0: starting from $num_gauss_init Gaussians, reaching $num_gauss;" echo "$0: for $num_iters_init iterations, using at most $num_frames frames of data" $cmd $parallel_opts $dir/log/gmm_init.log \ gmm-global-init-from-feats --num-threads=$num_threads --num-frames=$num_frames \ --min-gaussian-weight=$min_gaussian_weight \ --num-gauss=$num_gauss --num-gauss-init=$num_gauss_init --num-iters=$num_iters_init \ "$all_feats" $dir/0.dubm || exit 1; fi # Store Gaussian selection indices on disk-- this speeds up the training passes. if [ $stage -le -1 ]; then echo Getting Gaussian-selection info $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$num_gselect $dir/0.dubm "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi echo "$0: will train for $num_iters iterations, in parallel over" echo "$0: $nj machines, parallelized with '$cmd'" for x in `seq 0 $[$num_iters-1]`; do echo "$0: Training pass $x" if [ $stage -le $x ]; then # Accumulate stats. $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-global-acc-stats "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \ $dir/$x.dubm "$feats" $dir/$x.JOB.acc || exit 1; if [ $x -lt $[$num_iters-1] ]; then # Don't remove low-count Gaussians till last iter, opt="--remove-low-count-gaussians=false" # or gselect info won't be valid any more. else opt="--remove-low-count-gaussians=$remove_low_count_gaussians" fi $cmd $dir/log/update.$x.log \ gmm-global-est $opt --min-gaussian-weight=$min_gaussian_weight $dir/$x.dubm "gmm-global-sum-accs - $dir/$x.*.acc|" \ $dir/$[$x+1].dubm || exit 1; $cleanup && rm $dir/$x.*.acc $dir/$x.dubm fi done $cleanup && rm $dir/gselect.*.gz mv $dir/$num_iters.dubm $dir/final.dubm || exit 1; exit 0; |