Blame view

egs/tedlium/s5_r2/local/nnet3/tuning/run_lstm_1a.sh 6.41 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  #!/bin/bash
  
  #    This is the standard "lstm" system, built in nnet3; this script
  # is the version that's meant to run with data-cleanup, that doesn't
  # support parallel alignments.
  
  
  # by default, with cleanup:
  # local/nnet3/run_lstm.sh
  
  # without cleanup:
  # local/nnet3/run_lstm.sh  --train-set train --gmm tri3 --nnet3-affix "" &
  
  
  set -e -o pipefail -u
  
  # First the options that are passed through to run_ivector_common.sh
  # (some of which are also used in this script directly).
  stage=0
  nj=30
  decode_nj=30
  min_seg_len=1.55
  train_set=train_cleaned
  gmm=tri3_cleaned  # this is the source gmm-dir for the data-type of interest; it
                    # should have alignments for the specified training data.
  num_threads_ubm=32
  nnet3_affix=_cleaned  # cleanup affix for exp dirs, e.g. _cleaned
  
  # Options which are not passed through to run_ivector_common.sh
  affix=
  common_egs_dir=
  reporting_email=
  
  # LSTM options
  train_stage=-10
  label_delay=5
  cell_dim=1024
  recurrent_projection_dim=256
  non_recurrent_projection_dim=256
  chunk_width=20
  chunk_left_context=40
  chunk_right_context=0
  max_param_change=2.0
  
  # training options
  srand=0
  num_epochs=6
  initial_effective_lrate=0.0003
  final_effective_lrate=0.00003
  num_jobs_initial=3
  num_jobs_final=15
  momentum=0.5
  num_chunk_per_minibatch=128,64
  samples_per_iter=20000
  remove_egs=true
  
  #decode options
  extra_left_context=
  extra_right_context=
  frames_per_chunk=
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --nj $nj \
                                    --min-seg-len $min_seg_len \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --num-threads-ubm $num_threads_ubm \
                                    --nnet3-affix "$nnet3_affix"
  
  
  
  gmm_dir=exp/${gmm}
  graph_dir=$gmm_dir/graph
  ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
  dir=exp/nnet3${nnet3_affix}/lstm${affix:+_$affix}
  if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi
  dir=${dir}_sp
  train_data_dir=data/${train_set}_sp_hires_comb
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
  
  
  for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
       $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  if [ $stage -le 12 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $gmm_dir/tree | grep num-pdfs | awk '{print $2}')
    [ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; }
  
    lstm_opts="decay-time=20 cell-dim=$cell_dim"
    lstm_opts+=" recurrent-projection-dim=$recurrent_projection_dim"
    lstm_opts+=" non-recurrent-projection-dim=$non_recurrent_projection_dim"
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda delay=$label_delay input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
    fast-lstmp-layer name=fastlstm1 delay=-1 $lstm_opts
    fast-lstmp-layer name=fastlstm2 delay=-2 $lstm_opts
    fast-lstmp-layer name=fastlstm3 delay=-3 $lstm_opts
    output-layer name=output output-delay=$label_delay dim=$num_targets max-change=1.5
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs || exit 1
  fi
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/train_rnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir=$train_ivector_dir \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.srand=$srand \
      --trainer.num-epochs=$num_epochs \
      --trainer.samples-per-iter=$samples_per_iter \
      --trainer.optimization.num-jobs-initial=$num_jobs_initial \
      --trainer.optimization.num-jobs-final=$num_jobs_final \
      --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \
      --trainer.optimization.final-effective-lrate=$final_effective_lrate \
      --trainer.optimization.shrink-value 0.99 \
      --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \
      --trainer.optimization.momentum=$momentum \
      --egs.chunk-width=$chunk_width \
      --egs.chunk-left-context=$chunk_left_context \
      --egs.chunk-right-context=$chunk_right_context \
      --egs.chunk-left-context-initial=0 \
      --egs.chunk-right-context-final=0 \
      --egs.dir="$common_egs_dir" \
      --cleanup.remove-egs=$remove_egs \
      --cleanup.preserve-model-interval=1 \
      --use-gpu=true \
      --feat-dir=$train_data_dir \
      --ali-dir=$ali_dir \
      --lang=data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    [ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
    [ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
    [ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width;
    rm $dir/.error 2>/dev/null || true
    for dset in dev test; do
     (
      steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd"  --num-threads 4 \
          --extra-left-context $extra_left_context \
          --extra-right-context $extra_right_context \
          --extra-left-context-initial 0 \
          --extra-right-context-final 0 \
          --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \
        ${graph_dir} data/${dset}_hires ${dir}/decode_${dset} || exit 1
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
         data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1
      ) || touch $dir/.error &
    done
    wait
    [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
  fi
  
  
  exit 0;