Blame view
egs/tedlium/s5_r2/local/nnet3/tuning/run_tdnn_1a.sh
4.03 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
#!/bin/bash # This is the standard "tdnn" system, built in nnet3; this script # is the version that's meant to run with data-cleanup, that doesn't # support parallel alignments. # local/nnet3/compare_wer.sh exp/nnet3_cleaned/tdnn1a_sp exp/nnet3_cleaned/tdnn1b_sp # System tdnn1a_sp tdnn1b_sp # WER on dev(orig) 11.9 11.7 # WER on dev(rescored) 11.2 10.9 # WER on test(orig) 11.6 11.7 # WER on test(rescored) 11.0 11.0 # Final train prob -0.9255 -0.9416 # Final valid prob -1.1842 -1.1496 # Final train acc 0.7245 0.7241 # Final valid acc 0.6771 0.6788 # by default, with cleanup: # local/nnet3/run_tdnn.sh # without cleanup: # local/nnet3/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix "" & set -e -o pipefail -u # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 decode_nj=30 min_seg_len=1.55 train_set=train_cleaned gmm=tri3_cleaned # this is the source gmm-dir for the data-type of interest; it # should have alignments for the specified training data. num_threads_ubm=32 nnet3_affix=_cleaned # cleanup affix for exp dirs, e.g. _cleaned tdnn_affix=1a #affix for TDNN directory e.g. "a" or "b", in case we change the configuration. # Options which are not passed through to run_ivector_common.sh train_stage=-10 splice_indexes="-2,-1,0,1,2 -1,2 -3,3 -7,2 -3,3 0 0" remove_egs=true relu_dim=850 num_epochs=3 . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --nj $nj \ --min-seg-len $min_seg_len \ --train-set $train_set \ --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/${gmm} graph_dir=$gmm_dir/graph ali_dir=exp/${gmm}_ali_${train_set}_sp_comb dir=exp/nnet3${nnet3_affix}/tdnn${tdnn_affix}_sp train_data_dir=data/${train_set}_sp_hires_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 12 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage fi steps/nnet3/tdnn/train.sh --stage $train_stage \ --num-epochs $num_epochs --num-jobs-initial 2 --num-jobs-final 12 \ --splice-indexes "$splice_indexes" \ --feat-type raw \ --online-ivector-dir ${train_ivector_dir} \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \ --cmd "$decode_cmd" \ --relu-dim "$relu_dim" \ --remove-egs "$remove_egs" \ $train_data_dir data/lang $ali_dir $dir fi if [ $stage -le 13 ]; then rm $dir/.error || true 2>/dev/null for dset in dev test; do ( steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ ${graph_dir} data/${dset}_hires ${dir}/decode_${dset} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \ data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |