Blame view

egs/tedlium/s5_r2/local/nnet3/tuning/run_tdnn_1b.sh 6.19 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  #!/bin/bash
  
  
  # 1b is as 1a but uses xconfigs.
  
  #    This is the standard "tdnn" system, built in nnet3; this script
  # is the version that's meant to run with data-cleanup, that doesn't
  # support parallel alignments.
  
  
  # steps/info/nnet3_dir_info.pl exp/nnet3_cleaned/tdnn1b_sp
  # exp/nnet3_cleaned/tdnn1b_sp: num-iters=240 nj=2..12 num-params=10.3M dim=40+100->4187 combine=-0.95->-0.95 loglike:train/valid[159,239,combined]=(-1.01,-0.95,-0.94/-1.18,-1.16,-1.15) accuracy:train/valid[159,239,combined]=(0.71,0.72,0.72/0.67,0.68,0.68)
  
  # local/nnet3/compare_wer.sh exp/nnet3_cleaned/tdnn1a_sp exp/nnet3_cleaned/tdnn1b_sp
  # System                tdnn1a_sp tdnn1b_sp
  # WER on dev(orig)           11.9      11.7
  # WER on dev(rescored)       11.2      10.9
  # WER on test(orig)          11.6      11.7
  # WER on test(rescored)      11.0      11.0
  # Final train prob        -0.9255   -0.9416
  # Final valid prob        -1.1842   -1.1496
  # Final train acc          0.7245    0.7241
  # Final valid acc          0.6771    0.6788
  
  
  # by default, with cleanup:
  # local/nnet3/run_tdnn.sh
  
  # without cleanup:
  # local/nnet3/run_tdnn.sh  --train-set train --gmm tri3 --nnet3-affix "" &
  
  
  set -e -o pipefail -u
  
  # First the options that are passed through to run_ivector_common.sh
  # (some of which are also used in this script directly).
  stage=0
  nj=30
  decode_nj=30
  min_seg_len=1.55
  train_set=train_cleaned
  gmm=tri3_cleaned  # this is the source gmm-dir for the data-type of interest; it
                    # should have alignments for the specified training data.
  num_threads_ubm=32
  nnet3_affix=_cleaned  # cleanup affix for exp dirs, e.g. _cleaned
  tdnn_affix=1b  #affix for TDNN directory e.g. "a" or "b", in case we change the configuration.
  
  # Options which are not passed through to run_ivector_common.sh
  train_stage=-10
  remove_egs=true
  relu_dim=850
  srand=0
  reporting_email=dpovey@gmail.com
  # set common_egs_dir to use previously dumped egs.
  common_egs_dir=
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --nj $nj \
                                    --min-seg-len $min_seg_len \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --num-threads-ubm $num_threads_ubm \
                                    --nnet3-affix "$nnet3_affix"
  
  
  
  gmm_dir=exp/${gmm}
  graph_dir=$gmm_dir/graph
  ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
  dir=exp/nnet3${nnet3_affix}/tdnn${tdnn_affix}_sp
  train_data_dir=data/${train_set}_sp_hires_comb
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
  
  
  for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
       $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  
  if [ $stage -le 12 ]; then
    mkdir -p $dir
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $gmm_dir/tree |grep num-pdfs|awk '{print $2}')
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-renorm-layer name=tdnn1 dim=850
    relu-renorm-layer name=tdnn2 dim=850 input=Append(-1,2)
    relu-renorm-layer name=tdnn3 dim=850 input=Append(-3,3)
    relu-renorm-layer name=tdnn4 dim=850 input=Append(-7,2)
    relu-renorm-layer name=tdnn5 dim=850 input=Append(-3,3)
    relu-renorm-layer name=tdnn6 dim=850
    output-layer name=output dim=$num_targets max-change=1.5
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  
  
  if [ $stage -le 13 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage
    fi
  
    steps/nnet3/train_dnn.py --stage=$train_stage \
      --cmd="$decode_cmd" \
      --feat.online-ivector-dir=$train_ivector_dir \
      --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
      --trainer.srand=$srand \
      --trainer.max-param-change=2.0 \
      --trainer.num-epochs=3 \
      --trainer.samples-per-iter=400000 \
      --trainer.optimization.num-jobs-initial=2 \
      --trainer.optimization.num-jobs-final=12 \
      --trainer.optimization.initial-effective-lrate=0.0015 \
      --trainer.optimization.final-effective-lrate=0.00015 \
      --trainer.optimization.minibatch-size=256,128 \
      --egs.dir="$common_egs_dir" \
      --cleanup.remove-egs=$remove_egs \
      --use-gpu=true \
      --feat-dir=$train_data_dir \
      --ali-dir=$ali_dir \
      --lang=data/lang \
      --reporting.email="$reporting_email" \
      --dir=$dir  || exit 1;
  fi
  
  if [ $stage -le 14 ]; then
    # note: for TDNNs, looped decoding gives exactly the same results
    # as regular decoding, so there is no point in testing it separately.
    # We use regular decoding because it supports multi-threaded (we just
    # didn't create the binary for that, for looped decoding, so far).
    rm $dir/.error || true 2>/dev/null
    for dset in dev test; do
     (
      steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd"  --num-threads 4 \
          --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \
        ${graph_dir} data/${dset}_hires ${dir}/decode_${dset} || exit 1
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
         data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1
      ) || touch $dir/.error &
    done
    wait
    [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
  fi
  
  
  exit 0;