Blame view
egs/tedlium/s5_r2/local/nnet3/tuning/run_tdnn_1c.sh
7.28 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/bin/bash # 1c is as 1b but using more 'chain-like' splicing and slightly # smaller dim. Not better; maybe slightly worse. # note: the num-params is almost the same. # steps/info/nnet3_dir_info.pl exp/nnet3_cleaned/tdnn1{b,c}_sp # exp/nnet3_cleaned/tdnn1b_sp: num-iters=240 nj=2..12 num-params=10.3M dim=40+100->4187 combine=-0.95->-0.95 loglike:train/valid[159,239,combined]=(-1.01,-0.95,-0.94/-1.18,-1.16,-1.15) accuracy:train/valid[159,239,combined]=(0.71,0.72,0.72/0.67,0.68,0.68) # exp/nnet3_cleaned/tdnn1c_sp: num-iters=240 nj=2..12 num-params=10.1M dim=40+100->4187 combine=-1.16->-1.15 loglike:train/valid[159,239,combined]=(-1.22,-1.16,-1.15/-1.41,-1.38,-1.38) accuracy:train/valid[159,239,combined]=(0.66,0.67,0.68/0.62,0.63,0.63) # local/nnet3/compare_wer.sh exp/nnet3_cleaned/tdnn1{b,c}_sp # System tdnn1b_sp tdnn1c_sp # WER on dev(orig) 11.7 11.9 # WER on dev(rescored) 10.9 11.1 # WER on test(orig) 11.7 11.8 # WER on test(rescored) 11.0 11.2 # Final train prob -0.9416 -1.1505 # Final valid prob -1.1496 -1.3805 # Final train acc 0.7241 0.6756 # Final valid acc 0.6788 0.6255 # This is the standard "tdnn" system, built in nnet3; this script # is the version that's meant to run with data-cleanup, that doesn't # support parallel alignments. # steps/info/nnet3_dir_info.pl exp/nnet3_cleaned/tdnn1b_sp # exp/nnet3_cleaned/tdnn1b_sp: num-iters=240 nj=2..12 num-params=10.3M dim=40+100->4187 combine=-0.95->-0.95 loglike:train/valid[159,239,combined]=(-1.01,-0.95,-0.94/-1.18,-1.16,-1.15) accuracy:train/valid[159,239,combined]=(0.71,0.72,0.72/0.67,0.68,0.68) # local/nnet3/compare_wer.sh exp/nnet3_cleaned/tdnn1a_sp exp/nnet3_cleaned/tdnn1b_sp # System tdnn1a_sp tdnn1b_sp # WER on dev(orig) 11.9 11.7 # WER on dev(rescored) 11.2 10.9 # WER on test(orig) 11.6 11.7 # WER on test(rescored) 11.0 11.0 # Final train prob -0.9255 -0.9416 # Final valid prob -1.1842 -1.1496 # Final train acc 0.7245 0.7241 # Final valid acc 0.6771 0.6788 # by default, with cleanup: # local/nnet3/run_tdnn.sh # without cleanup: # local/nnet3/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix "" & set -e -o pipefail -u # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 decode_nj=30 min_seg_len=1.55 train_set=train_cleaned gmm=tri3_cleaned # this is the source gmm-dir for the data-type of interest; it # should have alignments for the specified training data. num_threads_ubm=32 nnet3_affix=_cleaned # cleanup affix for exp dirs, e.g. _cleaned tdnn_affix=1c #affix for TDNN directory e.g. "a" or "b", in case we change the configuration. # Options which are not passed through to run_ivector_common.sh train_stage=-10 remove_egs=true srand=0 reporting_email=dpovey@gmail.com # set common_egs_dir to use previously dumped egs. common_egs_dir= . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --nj $nj \ --min-seg-len $min_seg_len \ --train-set $train_set \ --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/${gmm} graph_dir=$gmm_dir/graph ali_dir=exp/${gmm}_ali_${train_set}_sp_comb dir=exp/nnet3${nnet3_affix}/tdnn${tdnn_affix}_sp train_data_dir=data/${train_set}_sp_hires_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 12 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $gmm_dir/tree |grep num-pdfs|awk '{print $2}') mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-renorm-layer name=tdnn1 dim=750 relu-renorm-layer name=tdnn2 dim=750 input=Append(-1,0,1) relu-renorm-layer name=tdnn3 dim=750 input=Append(-1,0,1) relu-renorm-layer name=tdnn4 dim=750 input=Append(-3,0,3) relu-renorm-layer name=tdnn5 dim=750 input=Append(-6,-3,0) output-layer name=output dim=$num_targets max-change=1.5 EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 13 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage fi steps/nnet3/train_dnn.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --trainer.srand=$srand \ --trainer.max-param-change=2.0 \ --trainer.num-epochs=3 \ --trainer.samples-per-iter=400000 \ --trainer.optimization.num-jobs-initial=2 \ --trainer.optimization.num-jobs-final=12 \ --trainer.optimization.initial-effective-lrate=0.0015 \ --trainer.optimization.final-effective-lrate=0.00015 \ --trainer.optimization.minibatch-size=256,128 \ --egs.dir="$common_egs_dir" \ --cleanup.remove-egs=$remove_egs \ --use-gpu=true \ --feat-dir=$train_data_dir \ --ali-dir=$ali_dir \ --lang=data/lang \ --reporting.email="$reporting_email" \ --dir=$dir || exit 1; fi if [ $stage -le 14 ]; then # note: for TDNNs, looped decoding gives exactly the same results # as regular decoding, so there is no point in testing it separately. # We use regular decoding because it supports multi-threaded (we just # didn't create the binary for that, for looped decoding, so far). rm $dir/.error || true 2>/dev/null for dset in dev test; do ( steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ ${graph_dir} data/${dset}_hires ${dir}/decode_${dset} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \ data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |