Blame view
egs/tedlium/s5_r2/local/run_cleanup_segmentation.sh
2.03 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
#!/bin/bash # Copyright 2016 Vimal Manohar # 2016 Johns Hopkins University (author: Daniel Povey) # Apache 2.0 # This script demonstrates how to re-segment training data selecting only the # "good" audio that matches the transcripts. # The basic idea is to decode with an existing in-domain acoustic model, and a # biased language model built from the reference, and then work out the # segmentation from a ctm like file. # For nnet3 and chain results after cleanup, see the scripts in # local/nnet3/run_tdnn.sh and local/chain/run_tdnn.sh # GMM Results for speaker-independent (SI) and speaker adaptive training (SAT) systems on dev and test sets # [will add these later]. set -e set -o pipefail set -u stage=0 cleanup_stage=0 data=data/train cleanup_affix=cleaned srcdir=exp/tri3 nj=100 decode_nj=16 decode_num_threads=4 . ./path.sh . ./cmd.sh . utils/parse_options.sh cleaned_data=${data}_${cleanup_affix} dir=${srcdir}_${cleanup_affix}_work cleaned_dir=${srcdir}_${cleanup_affix} if [ $stage -le 1 ]; then # This does the actual data cleanup. steps/cleanup/clean_and_segment_data.sh --stage $cleanup_stage --nj $nj --cmd "$train_cmd" \ $data data/lang $srcdir $dir $cleaned_data fi if [ $stage -le 2 ]; then steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ $cleaned_data data/lang $srcdir ${srcdir}_ali_${cleanup_affix} fi if [ $stage -le 3 ]; then steps/train_sat.sh --cmd "$train_cmd" \ 5000 100000 $cleaned_data data/lang ${srcdir}_ali_${cleanup_affix} ${cleaned_dir} fi if [ $stage -le 4 ]; then # Test with the models trained on cleaned-up data. utils/mkgraph.sh data/lang ${cleaned_dir} ${cleaned_dir}/graph for dset in dev test; do steps/decode_fmllr.sh --nj $decode_nj --num-threads $decode_num_threads \ --cmd "$decode_cmd" --num-threads 4 \ ${cleaned_dir}/graph data/${dset} ${cleaned_dir}/decode_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \ data/${dset} ${cleaned_dir}/decode_${dset} ${cleaned_dir}/decode_${dset}_rescore done fi |