Blame view
egs/tedlium/s5_r2/local/run_segmentation_long_utts.sh
11.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
#!/bin/bash # Copyright 2016 Vimal Manohar # Apache 2.0 # This script demonstrates how to re-segment long audios into short segments. # The basic idea is to decode with an existing in-domain acoustic model, and a # bigram language model built from the reference, and then work out the # segmentation from a ctm like file. ## %WER results. ## Baseline results # %WER 18.1 | 507 17783 | 84.7 10.7 4.6 2.8 18.1 91.1 | -0.073 | exp/tri3/decode_dev_rescore/score_16_0.0/ctm.filt.filt.sys # %WER 16.6 | 1155 27500 | 85.7 10.7 3.6 2.4 16.6 86.0 | -0.041 | exp/tri3/decode_test_rescore/score_16_0.0/ctm.filt.filt.sys ## With Cleanup # %WER 18.0 | 507 17783 | 85.0 10.6 4.4 3.0 18.0 90.9 | -0.064 | exp/tri3_cleaned/decode_dev_rescore/score_14_0.0/ctm.filt.filt.sys # %WER 16.6 | 1155 27500 | 85.9 10.8 3.3 2.5 16.6 86.6 | -0.050 | exp/tri3_cleaned/decode_test_rescore/score_14_0.0/ctm.filt.filt.sys ## Segmentation results # %WER 18.9 | 507 17783 | 83.9 11.1 5.0 2.8 18.9 92.9 | -0.103 | exp/tri3_reseg_a/decode_nosp_dev_rescore/score_14_0.0/ctm.filt.filt.sys # %WER 17.6 | 1155 27500 | 84.6 11.3 4.1 2.2 17.6 86.8 | -0.005 | exp/tri3_reseg_a/decode_nosp_test_rescore/score_14_0.0/ctm.filt.filt.sys ## Segmentation + Cleanup # cleaned - # Default segmentation-opts "--max-junk-proportion=1 --max-deleted-words-kept-when-merging=1 --min-split-point-duration=0.1" # cleaned_b - # "--max-junk-proportion=0.5 --max-deleted-words-kept-when-merging=10" # cleaned_c - # "--max-junk-proportion=0.2 --max-deleted-words-kept-when-merging=6 --min-split-point-duration=0.3" # %WER 18.7 | 507 17783 | 84.0 11.0 5.0 2.8 18.7 91.7 | -0.119 | exp/tri3_reseg_a_cleaned/decode_nosp_dev_rescore/score_15_0.0/ctm.filt.filt.sys # %WER 18.6 | 507 17783 | 84.0 11.0 4.9 2.7 18.6 91.5 | -0.092 | exp/tri3_reseg_a_cleaned_b/decode_nosp_dev_rescore/score_15_0.0/ctm.filt.filt.sys # %WER 18.6 | 507 17783 | 84.1 10.8 5.0 2.7 18.6 92.1 | -0.114 | exp/tri3_reseg_a_cleaned_c/decode_nosp_dev_rescore/score_15_0.0/ctm.filt.filt.sys # %WER 17.7 | 1155 27500 | 84.5 11.4 4.0 2.2 17.7 86.8 | -0.020 | exp/tri3_reseg_a_cleaned/decode_nosp_test_rescore/score_14_0.0/ctm.filt.filt.sys # %WER 17.3 | 1155 27500 | 84.8 11.2 4.1 2.1 17.3 86.8 | -0.002 | exp/tri3_reseg_a_cleaned_b/decode_nosp_test_rescore/score_15_0.0/ctm.filt.filt.sys # %WER 17.7 | 1155 27500 | 84.6 11.4 4.1 2.3 17.7 86.6 | -0.018 | exp/tri3_reseg_a_cleaned_c/decode_nosp_test_rescore/score_14_0.0/ctm.filt.filt.sys ## Use silence and pronunciation probs estimated from resegmented data # %WER 18.2 | 507 17783 | 84.6 10.8 4.5 2.9 18.2 92.5 | -0.037 | exp/tri3_reseg_a/decode_a_dev_rescore/score_16_0.0/ctm.filt.filt.sys # %WER 16.9 | 1155 27500 | 85.5 11.0 3.5 2.4 16.9 86.1 | -0.024 | exp/tri3_reseg_a/decode_a_test_rescore/score_14_0.0/ctm.filt.filt.sys ## Use silence and pronunciation probs estimated from resegmented and cleaned up data # %WER 18.2 | 507 17783 | 84.4 10.8 4.9 2.6 18.2 92.5 | -0.074 | exp/tri3_reseg_a_cleaned_b/decode_a_cleaned_b_dev_rescore/score_15_0.5/ctm.filt.filt.sys # %WER 16.8 | 1155 27500 | 85.4 10.7 3.9 2.1 16.8 86.8 | -0.046 | exp/tri3_reseg_a_cleaned_b/decode_a_cleaned_b_test_rescore/score_14_0.5/ctm.filt.filt.sys . ./cmd.sh . ./path.sh set -e -o pipefail -u segment_stage=-9 cleanup_stage=-1 cleanup_affix=cleaned_b affix=_a decode_nj=8 # note: should not be >38 which is the number of speakers in the dev set # after applying --seconds-per-spk-max 180. We decode with 4 threads, so # this will be too many jobs if you're using run.pl. ############################################################################### # Simulate unsegmented data directory. ############################################################################### utils/data/convert_data_dir_to_whole.sh data/train data/train_long ############################################################################### # Train system on a small subset of 2000 utterances that are # manually segmented. ############################################################################### utils/subset_data_dir.sh --speakers data/train 2000 data/train_2k utils/subset_data_dir.sh --shortest data/train_2k 500 data/train_2k_short500 steps/make_mfcc.sh --cmd "$train_cmd" --nj 32 \ data/train_long exp/make_mfcc/train_long mfcc || exit 1 steps/compute_cmvn_stats.sh data/train_long \ exp/make_mfcc/train_long mfcc steps/train_mono.sh --nj 20 --cmd "$train_cmd" \ data/train_2k_short500 data/lang_nosp exp/mono_a steps/align_si.sh --nj 20 --cmd "$train_cmd" \ data/train_2k data/lang_nosp exp/mono_a exp/mono_a_ali_2k steps/train_deltas.sh --cmd "$train_cmd" \ 500 5000 data/train_2k data/lang_nosp exp/mono_a_ali_2k exp/tri1a steps/align_si.sh --nj 20 --cmd "$train_cmd" \ data/train_2k data/lang_nosp exp/tri1a exp/tri1a_ali steps/train_lda_mllt.sh --cmd "$train_cmd" \ 1000 10000 data/train_2k data/lang_nosp exp/tri1a_ali exp/tri1b ############################################################################### # Segment long recordings using TF-IDF retrieval of reference text # for uniformly segmented audio chunks based on Smith-Waterman alignment. # Use a model trained on train_2k (tri1b) ############################################################################### steps/cleanup/segment_long_utterances.sh --cmd "$train_cmd" \ --stage $segment_stage --nj 80 \ --max-bad-proportion 0.5 \ exp/tri1b data/lang_nosp data/train_long data/train_reseg${affix} \ exp/segment_long_utts${affix}_train steps/compute_cmvn_stats.sh data/train_reseg${affix} \ exp/make_mfcc/train_reseg${affix} mfcc utils/fix_data_dir.sh data/train_reseg${affix} ############################################################################### # Train new model on segmented data directory starting from the same model # used for segmentation. (tri2_reseg) ############################################################################### # Align tri1b system with reseg${affix} data steps/align_si.sh --nj 40 --cmd "$train_cmd" \ data/train_reseg${affix} \ data/lang_nosp exp/tri1b exp/tri1b_ali_reseg${affix} || exit 1; # Train LDA+MLLT system on reseg${affix} data steps/train_lda_mllt.sh --cmd "$train_cmd" \ 4000 50000 data/train_reseg${affix} data/lang_nosp \ exp/tri1b_ali_reseg${affix} exp/tri2_reseg${affix} ( utils/mkgraph.sh data/lang_nosp exp/tri2_reseg${affix} \ exp/tri2_reseg${affix}/graph_nosp for dset in dev test; do steps/decode.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri2_reseg${affix}/graph_nosp data/${dset} \ exp/tri2_reseg${affix}/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang_nosp \ data/lang_nosp_rescore \ data/${dset} exp/tri2_reseg${affix}/decode_nosp_${dset} \ exp/tri2_reseg${affix}/decode_nosp_${dset}_rescore done ) & ############################################################################### # Train SAT model on segmented data directory ############################################################################### # Train SAT system on reseg${affix} data steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \ data/train_reseg${affix} data/lang_nosp \ exp/tri2_reseg${affix} exp/tri3_reseg${affix} ( utils/mkgraph.sh data/lang_nosp exp/tri3_reseg${affix} \ exp/tri3_reseg${affix}/graph_nosp for dset in dev test; do steps/decode_fmllr.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3_reseg${affix}/graph_nosp data/${dset} \ exp/tri3_reseg${affix}/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang_nosp \ data/lang_nosp_rescore \ data/${dset} exp/tri3_reseg${affix}/decode_nosp_${dset} \ exp/tri3_reseg${affix}/decode_nosp_${dset}_rescore done ) & ############################################################################### # Clean and segmented data ############################################################################### segmentation_opts=( --max-junk-proportion=0.5 --max-deleted-words-kept-when-merging=10 ) opts="${segmentation_opts[@]}" steps/cleanup/clean_and_segment_data.sh --nj 40 --cmd "$train_cmd" \ --segmentation-opts "$opts" \ data/train_reseg${affix} data/lang_nosp exp/tri3_reseg${affix} \ exp/tri3_reseg${affix}_${cleanup_affix}_work \ data/train_reseg${affix}_${cleanup_affix} ############################################################################### # Train new SAT model on cleaned data directory ############################################################################### steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_reseg${affix}_${cleanup_affix} data/lang_nosp \ exp/tri3_reseg${affix} exp/tri3_reseg${affix}_ali_${cleanup_affix} steps/train_sat.sh --cmd "$train_cmd" \ 5000 100000 data/train_reseg${affix}_${cleanup_affix} data/lang_nosp \ exp/tri3_reseg${affix}_ali_${cleanup_affix} \ exp/tri3_reseg${affix}_$cleanup_affix ( utils/mkgraph.sh data/lang_nosp exp/tri3_reseg${affix}_$cleanup_affix \ exp/tri3_reseg${affix}_$cleanup_affix/graph_nosp for dset in dev test; do steps/decode_fmllr.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3_reseg${affix}_$cleanup_affix/graph_nosp data/${dset} \ exp/tri3_reseg${affix}_$cleanup_affix/decode_nosp_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang_nosp \ data/lang_nosp_rescore \ data/${dset} exp/tri3_reseg${affix}_$cleanup_affix/decode_nosp_${dset} \ exp/tri3_reseg${affix}_$cleanup_affix/decode_nosp_${dset}_rescore done ) & steps/get_prons.sh --cmd "$train_cmd" \ data/train_reseg${affix}_${cleanup_affix} \ data/lang_nosp exp/tri3_reseg${affix}_$cleanup_affix utils/dict_dir_add_pronprobs.sh --max-normalize true \ data/local/dict_nosp \ exp/tri3_reseg${affix}_$cleanup_affix/{pron,sil,pron_bigram}_counts_nowb.txt \ data/local/dict${affix}_$cleanup_affix utils/prepare_lang.sh data/local/dict${affix}_$cleanup_affix \ "<unk>" data/local/lang data/lang${affix}_$cleanup_affix cp -rT data/lang${affix}_$cleanup_affix data/lang${affix}_${cleanup_affix}_rescore cp data/lang_nosp/G.fst data/lang${affix}_$cleanup_affix/ cp data/lang_nosp_rescore/G.carpa data/lang${affix}_${cleanup_affix}_rescore/ ( utils/mkgraph.sh data/lang${affix}_${cleanup_affix} \ exp/tri3_reseg${affix}_$cleanup_affix{,/graph${affix}_${cleanup_affix}} for dset in dev test; do steps/decode_fmllr.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3_reseg${affix}_$cleanup_affix/graph${affix}_${cleanup_affix} \ data/${dset} \ exp/tri3_reseg${affix}_$cleanup_affix/decode${affix}_${cleanup_affix}_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang${affix}_${cleanup_affix} \ data/lang${affix}_${cleanup_affix}_rescore \ data/${dset} exp/tri3_reseg${affix}_$cleanup_affix/decode${affix}_${cleanup_affix}_${dset} \ exp/tri3_reseg${affix}_$cleanup_affix/decode${affix}_${cleanup_affix}_${dset}_rescore done ) & steps/get_prons.sh --cmd "$train_cmd" \ data/train_reseg${affix} \ data/lang_nosp exp/tri3_reseg${affix} utils/dict_dir_add_pronprobs.sh --max-normalize true \ data/local/dict_nosp \ exp/tri3_reseg${affix}/{pron,sil,pron_bigram}_counts_nowb.txt \ data/local/dict${affix} utils/prepare_lang.sh data/local/dict${affix} \ "<unk>" data/local/lang data/lang${affix} cp -rT data/lang${affix} data/lang${affix}_rescore cp data/lang_nosp/G.fst data/lang${affix}/ cp data/lang_nosp_rescore/G.carpa data/lang${affix}_rescore/ ( utils/mkgraph.sh data/lang${affix} \ exp/tri3_reseg${affix}{,/graph${affix}} for dset in dev test; do steps/decode_fmllr.sh --nj $decode_nj --cmd "$decode_cmd" --num-threads 4 \ exp/tri3_reseg${affix}/graph${affix} \ data/${dset} \ exp/tri3_reseg${affix}/decode${affix}_${dset} steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang${affix} \ data/lang${affix}_rescore \ data/${dset} exp/tri3_reseg${affix}/decode${affix}_${dset} \ exp/tri3_reseg${affix}/decode${affix}_${dset}_rescore done ) & wait exit 0 |