Blame view
egs/tedlium/s5_r2/local/ted_train_lm.sh
5.85 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
#!/bin/bash # Copyright 2016 Vincent Nguyen # 2016 Johns Hopkins University (author: Daniel Povey) # Apache 2.0 # # This script trains a LM on the Cantab-Tedlium text data and tedlium acoustic training data. # It is based on the example scripts distributed with PocoLM # It will first check if pocolm is installed and if not will process with installation # It will then get the source data from the pre-downloaded Cantab-Tedlium files # and the pre-prepared data/train text source. set -e stage=0 echo "$0 $@" # Print the command line for logging . utils/parse_options.sh || exit 1; dir=data/local/local_lm lm_dir=${dir}/data mkdir -p $dir . ./path.sh || exit 1; # for KALDI_ROOT export PATH=$KALDI_ROOT/tools/pocolm/scripts:$PATH ( # First make sure the pocolm toolkit is installed. cd $KALDI_ROOT/tools || exit 1; if [ -d pocolm ]; then echo Not installing the pocolm toolkit since it is already there. else echo "$0: Please install the PocoLM toolkit with: " echo " cd ../../../tools; extras/install_pocolm.sh; cd -" exit 1; fi ) || exit 1; num_dev_sentences=10000 #bypass_metaparam_optim_opt= # If you want to bypass the metaparameter optimization steps with specific metaparameters # un-comment the following line, and change the numbers to some appropriate values. # You can find the values from output log of train_lm.py. # These example numbers of metaparameters is for 4-gram model (with min-counts) # running with train_lm.py. # The dev perplexity should be close to the non-bypassed model. bypass_metaparam_optim_opt="--bypass-metaparameter-optimization=0.854,0.0722,0.5808,0.338,0.166,0.015,0.999,0.6228,0.340,0.172,0.999,0.788,0.501,0.406" # Note: to use these example parameters, you may need to remove the .done files # to make sure the make_lm_dir.py be called and tain only 3-gram model #for order in 3; do #rm -f ${lm_dir}/${num_word}_${order}.pocolm/.done if [ $stage -le 0 ]; then mkdir -p ${dir}/data mkdir -p ${dir}/data/text echo "$0: Getting the Data sources" rm ${dir}/data/text/* 2>/dev/null || true # Unzip TEDLIUM 6 data sources, normalize apostrophe+suffix to previous word, gzip the result. gunzip -c db/TEDLIUM_release2/LM/*.en.gz | sed 's/ <\/s>//g' | local/join_suffix.py | gzip -c > ${dir}/data/text/train.txt.gz # use a subset of the annotated training data as the dev set . # Note: the name 'dev' is treated specially by pocolm, it automatically # becomes the dev set. head -n $num_dev_sentences < data/train/text | cut -d " " -f 2- > ${dir}/data/text/dev.txt # .. and the rest of the training data as an additional data source. # we can later fold the dev data into this. tail -n +$[$num_dev_sentences+1] < data/train/text | cut -d " " -f 2- > ${dir}/data/text/ted.txt # for reporting perplexities, we'll use the "real" dev set. # (a subset of the training data is used as ${dir}/data/text/ted.txt to work # out interpolation weights. # note, we can't put it in ${dir}/data/text/, because then pocolm would use # it as one of the data sources. cut -d " " -f 2- < data/dev/text > ${dir}/data/real_dev_set.txt # get wordlist awk '{print $1}' db/TEDLIUM_release2/TEDLIUM.152k.dic | sed 's:([0-9])::g' | sort | uniq > ${dir}/data/wordlist fi order=4 if [ $stage -le 1 ]; then # decide on the vocabulary. # Note: you'd use --wordlist if you had a previously determined word-list # that you wanted to use. # Note: if you have more than one order, use a certain amount of words as the # vocab and want to restrict max memory for 'sort', echo "$0: training the unpruned LM" min_counts='train=2 ted=1' wordlist=${dir}/data/wordlist lm_name="`basename ${wordlist}`_${order}" if [ -n "${min_counts}" ]; then lm_name+="_`echo ${min_counts} | tr -s "[:blank:]" "_" | tr "=" "-"`" fi unpruned_lm_dir=${lm_dir}/${lm_name}.pocolm train_lm.py --wordlist=${wordlist} --num-splits=10 --warm-start-ratio=20 \ --limit-unk-history=true \ --fold-dev-into=ted ${bypass_metaparam_optim_opt} \ --min-counts="${min_counts}" \ ${dir}/data/text ${order} ${lm_dir}/work ${unpruned_lm_dir} get_data_prob.py ${dir}/data/real_dev_set.txt ${unpruned_lm_dir} 2>&1 | grep -F '[perplexity' #[perplexity = 157.87] over 18290.0 words fi if [ $stage -le 2 ]; then echo "$0: pruning the LM (to larger size)" # Using 10 million n-grams for a big LM for rescoring purposes. size=10000000 prune_lm_dir.py --target-num-ngrams=$size --initial-threshold=0.02 ${unpruned_lm_dir} ${dir}/data/lm_${order}_prune_big get_data_prob.py ${dir}/data/real_dev_set.txt ${dir}/data/lm_${order}_prune_big 2>&1 | grep -F '[perplexity' # current results, after adding --limit-unk-history=true: # get_data_prob.py: log-prob of data/local/local_lm/data/real_dev_set.txt given model data/local/local_lm/data/lm_4_prune_big was -5.16562818753 per word [perplexity = 175.147449465] over 18290.0 words. mkdir -p ${dir}/data/arpa format_arpa_lm.py ${dir}/data/lm_${order}_prune_big | gzip -c > ${dir}/data/arpa/${order}gram_big.arpa.gz fi if [ $stage -le 3 ]; then echo "$0: pruning the LM (to smaller size)" # Using 2 million n-grams for a smaller LM for graph building. Prune from the # bigger-pruned LM, it'll be faster. size=2000000 prune_lm_dir.py --target-num-ngrams=$size ${dir}/data/lm_${order}_prune_big ${dir}/data/lm_${order}_prune_small get_data_prob.py ${dir}/data/real_dev_set.txt ${dir}/data/lm_${order}_prune_small 2>&1 | grep -F '[perplexity' # current results, after adding --limit-unk-history=true (needed for modeling OOVs and not blowing up LG.fst): # get_data_prob.py: log-prob of data/local/local_lm/data/real_dev_set.txt given model data/local/local_lm/data/lm_4_prune_small was -5.29432352378 per word [perplexity = 199.202824404 over 18290.0 words. format_arpa_lm.py ${dir}/data/lm_${order}_prune_small | gzip -c > ${dir}/data/arpa/${order}gram_small.arpa.gz fi |