Blame view

egs/tedlium/s5_r3/local/run_cleanup_segmentation.sh 2.03 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  #!/bin/bash
  
  # Copyright 2016  Vimal Manohar
  #           2016  Johns Hopkins University (author: Daniel Povey)
  # Apache 2.0
  
  # This script demonstrates how to re-segment training data selecting only the
  # "good" audio that matches the transcripts.
  # The basic idea is to decode with an existing in-domain acoustic model, and a
  # biased language model built from the reference, and then work out the
  # segmentation from a ctm like file.
  
  # For nnet3 and chain results after cleanup, see the scripts in
  # local/nnet3/run_tdnn.sh and local/chain/run_tdnn.sh
  
  # GMM Results for speaker-independent (SI) and speaker adaptive training (SAT) systems on dev and test sets
  # [will add these later].
  
  set -e
  set -o pipefail
  set -u
  
  stage=0
  cleanup_stage=0
  data=data/train
  cleanup_affix=cleaned
  srcdir=exp/tri3
  nj=100
  decode_nj=16
  decode_num_threads=4
  
  . ./path.sh
  . ./cmd.sh
  . utils/parse_options.sh
  
  cleaned_data=${data}_${cleanup_affix}
  
  dir=${srcdir}_${cleanup_affix}_work
  cleaned_dir=${srcdir}_${cleanup_affix}
  
  if [ $stage -le 1 ]; then
    # This does the actual data cleanup.
    steps/cleanup/clean_and_segment_data.sh --stage $cleanup_stage --nj $nj --cmd "$train_cmd" \
      $data data/lang $srcdir $dir $cleaned_data
  fi
  
  if [ $stage -le 2 ]; then
    steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \
      $cleaned_data data/lang $srcdir ${srcdir}_ali_${cleanup_affix}
  fi
  
  if [ $stage -le 3 ]; then
    steps/train_sat.sh --cmd "$train_cmd" \
      5000 100000 $cleaned_data data/lang ${srcdir}_ali_${cleanup_affix} ${cleaned_dir}
  fi
  
  if [ $stage -le 4 ]; then
    # Test with the models trained on cleaned-up data.
    utils/mkgraph.sh data/lang ${cleaned_dir} ${cleaned_dir}/graph
  
    for dset in dev test; do
      steps/decode_fmllr.sh --nj $decode_nj --num-threads $decode_num_threads \
         --cmd "$decode_cmd"  --num-threads 4 \
         ${cleaned_dir}/graph data/${dset} ${cleaned_dir}/decode_${dset}
      steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
         data/${dset} ${cleaned_dir}/decode_${dset} ${cleaned_dir}/decode_${dset}_rescore
    done
  fi