Blame view

egs/timit/s5/run.sh 9.84 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  #!/bin/bash
  
  #
  # Copyright 2013 Bagher BabaAli,
  #           2014-2017 Brno University of Technology (Author: Karel Vesely)
  #
  # TIMIT, description of the database:
  # http://perso.limsi.fr/lamel/TIMIT_NISTIR4930.pdf
  #
  # Hon and Lee paper on TIMIT, 1988, introduces mapping to 48 training phonemes,
  # then re-mapping to 39 phonemes for scoring:
  # http://repository.cmu.edu/cgi/viewcontent.cgi?article=2768&context=compsci
  #
  
  . ./cmd.sh
  [ -f path.sh ] && . ./path.sh
  set -e
  
  # Acoustic model parameters
  numLeavesTri1=2500
  numGaussTri1=15000
  numLeavesMLLT=2500
  numGaussMLLT=15000
  numLeavesSAT=2500
  numGaussSAT=15000
  numGaussUBM=400
  numLeavesSGMM=7000
  numGaussSGMM=9000
  
  feats_nj=10
  train_nj=30
  decode_nj=5
  
  echo ============================================================================
  echo "                Data & Lexicon & Language Preparation                     "
  echo ============================================================================
  
  #timit=/export/corpora5/LDC/LDC93S1/timit/TIMIT # @JHU
  timit=/mnt/matylda2/data/TIMIT/timit # @BUT
  
  local/timit_data_prep.sh $timit || exit 1
  
  local/timit_prepare_dict.sh
  
  # Caution below: we remove optional silence by setting "--sil-prob 0.0",
  # in TIMIT the silence appears also as a word in the dictionary and is scored.
  utils/prepare_lang.sh --sil-prob 0.0 --position-dependent-phones false --num-sil-states 3 \
   data/local/dict "sil" data/local/lang_tmp data/lang
  
  local/timit_format_data.sh
  
  echo ============================================================================
  echo "         MFCC Feature Extration & CMVN for Training and Test set          "
  echo ============================================================================
  
  # Now make MFCC features.
  mfccdir=mfcc
  
  
  for x in train dev test; do
    steps/make_mfcc.sh --cmd "$train_cmd" --nj $feats_nj data/$x exp/make_mfcc/$x $mfccdir
    steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir
  done
  
  echo ============================================================================
  echo "                     MonoPhone Training & Decoding                        "
  echo ============================================================================
  
  steps/train_mono.sh  --nj "$train_nj" --cmd "$train_cmd" data/train data/lang exp/mono
  
  utils/mkgraph.sh data/lang_test_bg exp/mono exp/mono/graph
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/mono/graph data/dev exp/mono/decode_dev
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/mono/graph data/test exp/mono/decode_test
  
  echo ============================================================================
  echo "           tri1 : Deltas + Delta-Deltas Training & Decoding               "
  echo ============================================================================
  
  steps/align_si.sh --boost-silence 1.25 --nj "$train_nj" --cmd "$train_cmd" \
   data/train data/lang exp/mono exp/mono_ali
  
  # Train tri1, which is deltas + delta-deltas, on train data.
  steps/train_deltas.sh --cmd "$train_cmd" \
   $numLeavesTri1 $numGaussTri1 data/train data/lang exp/mono_ali exp/tri1
  
  utils/mkgraph.sh data/lang_test_bg exp/tri1 exp/tri1/graph
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri1/graph data/dev exp/tri1/decode_dev
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri1/graph data/test exp/tri1/decode_test
  
  echo ============================================================================
  echo "                 tri2 : LDA + MLLT Training & Decoding                    "
  echo ============================================================================
  
  steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
    data/train data/lang exp/tri1 exp/tri1_ali
  
  steps/train_lda_mllt.sh --cmd "$train_cmd" \
   --splice-opts "--left-context=3 --right-context=3" \
   $numLeavesMLLT $numGaussMLLT data/train data/lang exp/tri1_ali exp/tri2
  
  utils/mkgraph.sh data/lang_test_bg exp/tri2 exp/tri2/graph
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri2/graph data/dev exp/tri2/decode_dev
  
  steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri2/graph data/test exp/tri2/decode_test
  
  echo ============================================================================
  echo "              tri3 : LDA + MLLT + SAT Training & Decoding                 "
  echo ============================================================================
  
  # Align tri2 system with train data.
  steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
   --use-graphs true data/train data/lang exp/tri2 exp/tri2_ali
  
  # From tri2 system, train tri3 which is LDA + MLLT + SAT.
  steps/train_sat.sh --cmd "$train_cmd" \
   $numLeavesSAT $numGaussSAT data/train data/lang exp/tri2_ali exp/tri3
  
  utils/mkgraph.sh data/lang_test_bg exp/tri3 exp/tri3/graph
  
  steps/decode_fmllr.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri3/graph data/dev exp/tri3/decode_dev
  
  steps/decode_fmllr.sh --nj "$decode_nj" --cmd "$decode_cmd" \
   exp/tri3/graph data/test exp/tri3/decode_test
  
  echo ============================================================================
  echo "                        SGMM2 Training & Decoding                         "
  echo ============================================================================
  
  steps/align_fmllr.sh --nj "$train_nj" --cmd "$train_cmd" \
   data/train data/lang exp/tri3 exp/tri3_ali
  
  exit 0 # From this point you can run Karel's DNN : local/nnet/run_dnn.sh
  
  steps/train_ubm.sh --cmd "$train_cmd" \
   $numGaussUBM data/train data/lang exp/tri3_ali exp/ubm4
  
  steps/train_sgmm2.sh --cmd "$train_cmd" $numLeavesSGMM $numGaussSGMM \
   data/train data/lang exp/tri3_ali exp/ubm4/final.ubm exp/sgmm2_4
  
  utils/mkgraph.sh data/lang_test_bg exp/sgmm2_4 exp/sgmm2_4/graph
  
  steps/decode_sgmm2.sh --nj "$decode_nj" --cmd "$decode_cmd"\
   --transform-dir exp/tri3/decode_dev exp/sgmm2_4/graph data/dev \
   exp/sgmm2_4/decode_dev
  
  steps/decode_sgmm2.sh --nj "$decode_nj" --cmd "$decode_cmd"\
   --transform-dir exp/tri3/decode_test exp/sgmm2_4/graph data/test \
   exp/sgmm2_4/decode_test
  
  echo ============================================================================
  echo "                    MMI + SGMM2 Training & Decoding                       "
  echo ============================================================================
  
  steps/align_sgmm2.sh --nj "$train_nj" --cmd "$train_cmd" \
   --transform-dir exp/tri3_ali --use-graphs true --use-gselect true \
   data/train data/lang exp/sgmm2_4 exp/sgmm2_4_ali
  
  steps/make_denlats_sgmm2.sh --nj "$train_nj" --sub-split "$train_nj" \
   --acwt 0.2 --lattice-beam 10.0 --beam 18.0 \
   --cmd "$decode_cmd" --transform-dir exp/tri3_ali \
   data/train data/lang exp/sgmm2_4_ali exp/sgmm2_4_denlats
  
  steps/train_mmi_sgmm2.sh --acwt 0.2 --cmd "$decode_cmd" \
   --transform-dir exp/tri3_ali --boost 0.1 --drop-frames true \
   data/train data/lang exp/sgmm2_4_ali exp/sgmm2_4_denlats exp/sgmm2_4_mmi_b0.1
  
  for iter in 1 2 3 4; do
    steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \
     --transform-dir exp/tri3/decode_dev data/lang_test_bg data/dev \
     exp/sgmm2_4/decode_dev exp/sgmm2_4_mmi_b0.1/decode_dev_it$iter
  
    steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \
     --transform-dir exp/tri3/decode_test data/lang_test_bg data/test \
     exp/sgmm2_4/decode_test exp/sgmm2_4_mmi_b0.1/decode_test_it$iter
  done
  
  echo ============================================================================
  echo "                    DNN Hybrid Training & Decoding                        "
  echo ============================================================================
  
  # DNN hybrid system training parameters
  dnn_mem_reqs="--mem 1G"
  dnn_extra_opts="--num_epochs 20 --num-epochs-extra 10 --add-layers-period 1 --shrink-interval 3"
  
  steps/nnet2/train_tanh.sh --mix-up 5000 --initial-learning-rate 0.015 \
    --final-learning-rate 0.002 --num-hidden-layers 2  \
    --num-jobs-nnet "$train_nj" --cmd "$train_cmd" "${dnn_train_extra_opts[@]}" \
    data/train data/lang exp/tri3_ali exp/tri4_nnet
  
  [ ! -d exp/tri4_nnet/decode_dev ] && mkdir -p exp/tri4_nnet/decode_dev
  decode_extra_opts=(--num-threads 6)
  steps/nnet2/decode.sh --cmd "$decode_cmd" --nj "$decode_nj" "${decode_extra_opts[@]}" \
    --transform-dir exp/tri3/decode_dev exp/tri3/graph data/dev \
    exp/tri4_nnet/decode_dev | tee exp/tri4_nnet/decode_dev/decode.log
  
  [ ! -d exp/tri4_nnet/decode_test ] && mkdir -p exp/tri4_nnet/decode_test
  steps/nnet2/decode.sh --cmd "$decode_cmd" --nj "$decode_nj" "${decode_extra_opts[@]}" \
    --transform-dir exp/tri3/decode_test exp/tri3/graph data/test \
    exp/tri4_nnet/decode_test | tee exp/tri4_nnet/decode_test/decode.log
  
  echo ============================================================================
  echo "                    System Combination (DNN+SGMM)                         "
  echo ============================================================================
  
  for iter in 1 2 3 4; do
    local/score_combine.sh --cmd "$decode_cmd" \
     data/dev data/lang_test_bg exp/tri4_nnet/decode_dev \
     exp/sgmm2_4_mmi_b0.1/decode_dev_it$iter exp/combine_2/decode_dev_it$iter
  
    local/score_combine.sh --cmd "$decode_cmd" \
     data/test data/lang_test_bg exp/tri4_nnet/decode_test \
     exp/sgmm2_4_mmi_b0.1/decode_test_it$iter exp/combine_2/decode_test_it$iter
  done
  
  echo ============================================================================
  echo "               DNN Hybrid Training & Decoding (Karel's recipe)            "
  echo ============================================================================
  
  local/nnet/run_dnn.sh
  #local/nnet/run_autoencoder.sh : an example, not used to build any system,
  
  echo ============================================================================
  echo "                    Getting Results [see RESULTS file]                    "
  echo ============================================================================
  
  bash RESULTS dev
  bash RESULTS test
  
  echo ============================================================================
  echo "Finished successfully on" `date`
  echo ============================================================================
  
  exit 0