Blame view

egs/tunisian_msa/s5/run.sh 4.7 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  #!/bin/bash 
  
  # Trains on 11 hours of speechfrom CTELL{ONE,TWO,THREE,FOUR,FIVE}
  # Uses the QCRI vowelized Arabic lexicon.
  # Converts the Buckwalter encoding to utf8.
  . ./cmd.sh
  . ./path.sh
  stage=0
  
  . ./utils/parse_options.sh
  
  set -e
  set -o pipefail
  set u
  
  # Do not change tmpdir, other scripts under local depend on it
  tmpdir=data/local/tmp
  
  # The speech corpus is on openslr.org
  speech="http://www.openslr.org/resources/46/Tunisian_MSA.tar.gz"
  
  # We use the QCRI lexicon.
  lex="http://alt.qcri.org/resources/speech/dictionary/ar-ar_lexicon_2014-03-17.txt.bz2"
  
  # We train the lm on subtitles.
  subs_src="http://opus.nlpl.eu/download.php?f=OpenSubtitles2018/mono/OpenSubtitles2018.ar.gz"
  
  if [ $stage -le 1 ]; then
    # Downloads archive to this script's directory
    local/tamsa_download.sh $speech
  
    local/qcri_lexicon_download.sh $lex
  
    local/subs_download.sh $subs_src
  fi
  
  # preparation stages will store files under data/
  # Delete the entire data directory when restarting.
  if [ $stage -le 2 ]; then
    local/prepare_data.sh
  fi
  
  if [ $stage -le 3 ]; then
    mkdir -p $tmpdir/dict
    local/qcri_buckwalter2utf8.sh > $tmpdir/dict/qcri_utf8.txt
  fi
  
  if [ $stage -le 4 ]; then
    local/prepare_dict.sh $tmpdir/dict/qcri_utf8.txt
  fi
  
  if [ $stage -le 5 ]; then
    # prepare the lang directory
    utils/prepare_lang.sh data/local/dict "<UNK>" data/local/lang data/lang
  fi
  
  if [ $stage -le 6 ]; then
    echo "Preparing the subs data for lm training."
    local/subs_prepare_data.pl 
  fi
  
  if [ $stage -le 7 ]; then
    echo "lm training."
    local/prepare_lm.sh  $tmpdir/subs/lm/in_vocabulary.txt
  fi
  
  if [ $stage -le 8 ]; then
    echo "Making grammar fst."
    utils/format_lm.sh \
      data/lang data/local/lm/trigram.arpa.gz data/local/dict/lexicon.txt \
      data/lang_test
  fi
  
  if [ $stage -le 9 ]; then
    # extract acoustic features
    for fld in devtest train test; do
      steps/make_mfcc.sh data/$fld exp/make_mfcc/$fld mfcc
      utils/fix_data_dir.sh data/$fld
      steps/compute_cmvn_stats.sh data/$fld exp/make_mfcc mfcc
      utils/fix_data_dir.sh data/$fld
    done
  fi
  
  if [ $stage -le 10 ]; then
    echo "$0: monophone training"
    steps/train_mono.sh  data/train data/lang exp/mono
  fi
  
  if [ $stage -le 11 ]; then
    # monophone evaluation
    (
      # make decoding graph for monophones
      utils/mkgraph.sh data/lang_test exp/mono exp/mono/graph
  
      # test monophones
      for x in devtest test; do
        nspk=$(wc -l < data/$x/spk2utt)
        steps/decode.sh  --nj $nspk exp/mono/graph data/$x exp/mono/decode_${x}
      done
    ) &
  fi
  
  if [ $stage -le 12 ]; then
    # align with monophones
    steps/align_si.sh  data/train data/lang exp/mono exp/mono_ali
  fi
  
  if [ $stage -le 13 ]; then
    echo "$0: Starting  triphone training in exp/tri1"
    steps/train_deltas.sh \
      --boost-silence 1.25 1000 6000 data/train data/lang exp/mono_ali exp/tri1
  fi
  
  wait
  
  if [ $stage -le 14 ]; then
    # test cd gmm hmm models
    # make decoding graphs for tri1
    (
      utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph
  
      # decode test data with tri1 models
      for x in devtest test; do
        nspk=$(wc -l < data/$x/spk2utt)
        steps/decode.sh --nj $nspk exp/tri1/graph data/$x exp/tri1/decode_${x}
      done
    ) &
  fi
  
  if [ $stage -le 15 ]; then
    # align with triphones
    steps/align_si.sh  data/train data/lang exp/tri1 exp/tri1_ali
  fi
  
  if [ $stage -le 16 ]; then
    echo "$0: Starting (lda_mllt) triphone training in exp/tri2b"
    steps/train_lda_mllt.sh \
      --splice-opts "--left-context=3 --right-context=3" 500 5000 \
      data/train data/lang exp/tri1_ali exp/tri2b
  fi
  
  wait
  
  if [ $stage -le 17 ]; then
    (
      #  make decoding FSTs for tri2b models
      utils/mkgraph.sh data/lang_test exp/tri2b exp/tri2b/graph
  
      # decode  test with tri2b models
      for x in devtest test; do
        nspk=$(wc -l < data/$x/spk2utt)
        steps/decode.sh --nj $nspk exp/tri2b/graph data/$x exp/tri2b/decode_${x}
      done
    ) &
  fi
  
  if [ $stage -le 18 ]; then
    # align with lda and mllt adapted triphones
    steps/align_si.sh \
      --use-graphs true data/train data/lang exp/tri2b exp/tri2b_ali
  fi
  
  if [ $stage -le 19 ]; then
    echo "$0: Starting (SAT) triphone training in exp/tri3b"
    steps/train_sat.sh 800 8000 data/train data/lang exp/tri2b_ali exp/tri3b
  fi
  
  if [ $stage -le 20 ]; then
    (
      # make decoding graphs for SAT models
      utils/mkgraph.sh data/lang_test exp/tri3b exp/tri3b/graph
  
      # decode test sets with tri3b models
      for x in devtest test; do
        nspk=$(wc -l < data/$x/spk2utt)
        steps/decode_fmllr.sh --nj $nspk exp/tri3b/graph data/$x exp/tri3b/decode_${x}
      done
    ) &
  fi
  
  if [ $stage -le 21 ]; then
    # align with tri3b models
    echo "$0: Starting exp/tri3b_ali"
    steps/align_fmllr.sh data/train data/lang exp/tri3b exp/tri3b_ali
  fi
  
  if [ $stage -le 22 ]; then
    # train and test chain models
    local/chain/run_tdnn.sh
  fi