Blame view

egs/voxforge/gst_demo/run-simulated.sh 2.43 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  #!/bin/bash
  #
  # Copyright 2012 Vassil Panayotov
  # Copyright 2013 Tanel Alumae
  # Apache 2.0
  #
  # This script replicates the simulated online decoding demo in 
  # ../online_demo, using the GStreamer plugin
  # 
  
  KALDI_ROOT=`pwd`/../../..
  export PATH=$PWD/../s5/utils/:$KALDI_ROOT/src/bin:$PATH
  
  data_file="online-data"
  data_url="http://sourceforge.net/projects/kaldi/files/online-data.tar.bz2"
  
  # Change this to "tri2a" if you like to test using a ML-trained model
  ac_model_type=tri2b_mmi
  
  # Alignments and decoding results are saved in this directory
  decode_dir="./work"
  
  ac_model=${data_file}/models/$ac_model_type
  
  ac_model=${data_file}/models/$ac_model_type
  trans_matrix=""
  audio=${data_file}/audio
  
  if [ ! -s $KALDI_ROOT/src/gst-plugin/libgstonlinegmmdecodefaster.so ]; then
      echo "Kaldi Gstreamer plugin libarary $KALDI_ROOT/src/gst-plugin/libgstonlinegmmdecodefaster.so not present, make it first"
      exit 1
  fi
  
  if [ ! -s ${data_file}.tar.bz2 ]; then
      echo "Downloading test models and data ..."
      wget -T 10 -t 3 $data_url;
      
      if [ ! -s ${data_file}.tar.bz2 ]; then
          echo "Download of $data_file has failed!"
          exit 1
      fi
  fi
  
  if [ ! -d $ac_model ]; then
      echo "Extracting the models and data ..."
      tar xf ${data_file}.tar.bz2
  fi
  
  if [ -s $ac_model/matrix ]; then
      trans_matrix=$ac_model/matrix
  fi
  
  mkdir -p work
  
  for f in $audio/*.wav; do
      resultfile=$decode_dir/`basename $f .wav`.hyp
      echo "Decoding $f, result goes to $resultfile"
      GST_PLUGIN_PATH=$KALDI_ROOT/src/gst-plugin  gst-launch-1.0 filesrc location=$f \
        ! decodebin ! audioconvert ! audioresample \
        ! onlinegmmdecodefaster rt-min=0.8 rt-max=0.85  max-active=4000 beam=12.0 acoustic-scale=0.0769 \
                                 model=$ac_model/model fst=$ac_model/HCLG.fst \
                                 word-syms=$ac_model/words.txt silence-phones="1:2:3:4:5" \
                                 lda-mat=$trans_matrix \
        ! filesink location=$resultfile
  done
  
  # Convert the reference transcripts from symbols to word IDs
  sym2int.pl -f 2- $ac_model/words.txt < $audio/trans.txt > $decode_dir/ref.txt
  
  # Convert the hypotheses from symbols to word IDs, also remove the segmentation symbol "<#s>"
  for f in $decode_dir/*.hyp; do
      (echo -n `basename $f .hyp`" " ; cat $f) | sed 's/<#s>//g' | sym2int.pl -f 2- $ac_model/words.txt;
  done > $decode_dir/hyp.txt
  
  # Finally compute WER
  compute-wer --mode=present ark,t:$decode_dir/ref.txt ark,t:$decode_dir/hyp.txt