Blame view
egs/voxforge/s5/local/run_sgmm2.sh
2.92 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
#!/bin/bash # This is as run_sgmm.sh but using the "sgmm2" code, which uses "state-clustered tied mixtures" # and the symmetric SGMM, and one or two other small changes (e.g. no updating of M for a few # iterations.) . ./cmd.sh # Begin configuration section. nj=8 # End configuration section. echo "$0 $@" # Print the command line for logging . parse_options.sh || exit 1; ## SGMM on top of LDA+MLLT+SAT features. if [ ! -f exp/ubm4a/final.mdl ]; then steps/train_ubm.sh --silence-weight 0.5 --cmd "$train_cmd" 400 data/train data/lang exp/tri3b_ali exp/ubm4a || exit 1; fi steps/train_sgmm2.sh --cmd "$train_cmd" 8000 19000 data/train data/lang exp/tri3b_ali exp/ubm4a/final.ubm exp/sgmm2_4a || exit 1; utils/mkgraph.sh data/lang_test exp/sgmm2_4a exp/sgmm2_4a/graph || exit 1; steps/decode_sgmm2.sh --config conf/decode.config --nj $nj --cmd "$decode_cmd" \ --transform-dir exp/tri3b/decode exp/sgmm2_4a/graph data/test exp/sgmm2_4a/decode || exit 1; steps/decode_sgmm2.sh --use-fmllr true --config conf/decode.config --nj $nj --cmd "$decode_cmd" \ --transform-dir exp/tri3b/decode exp/sgmm2_4a/graph data/test exp/sgmm2_4a/decode_fmllr || exit 1; # Now we'll align the SGMM system to prepare for discriminative training. steps/align_sgmm2.sh --nj $nj --cmd "$train_cmd" --transform-dir exp/tri3b \ --use-graphs true --use-gselect true data/train data/lang exp/sgmm2_4a exp/sgmm2_4a_ali || exit 1; steps/make_denlats_sgmm2.sh --nj $nj --sub-split 20 --cmd "$decode_cmd" --transform-dir exp/tri3b \ data/train data/lang exp/sgmm2_4a_ali exp/sgmm2_4a_denlats steps/train_mmi_sgmm2.sh --cmd "$decode_cmd" --transform-dir exp/tri3b --boost 0.15 \ data/train data/lang exp/sgmm2_4a_ali exp/sgmm2_4a_denlats exp/sgmm2_4a_mmi_b0.15 for iter in 1 2 3 4; do steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \ --transform-dir exp/tri3b/decode data/lang data/test exp/sgmm2_4a/decode exp/sgmm2_4a_mmi_b0.15/decode_it$iter & done ( steps/train_mmi_sgmm2.sh --cmd "$decode_cmd" --transform-dir exp/tri3b --boost 0.15 --drop-frames true \ data/train data/lang exp/sgmm2_4a_ali exp/sgmm2_4a_denlats exp/sgmm2_4a_mmi_b0.15_x for iter in 1 2 3 4; do steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \ --transform-dir exp/tri3b/decode data/lang data/test exp/sgmm2_4a/decode exp/sgmm2_4a_mmi_b0.15_x/decode_it$iter & done ) wait steps/decode_combine.sh data/test data/lang exp/tri1/decode exp/tri2a/decode exp/combine_1_2a/decode || exit 1; steps/decode_combine.sh data/test data/lang exp/sgmm2_4a/decode exp/tri3b_mmi/decode exp/combine_sgmm2_4a_3b/decode || exit 1; # combining the sgmm run and the best MMI+fMMI run. steps/decode_combine.sh data/test data/lang exp/sgmm2_4a/decode exp/tri3b_fmmi_c/decode_it5 exp/combine_sgmm2_4a_3b_fmmic5/decode || exit 1; steps/decode_combine.sh data/test data/lang exp/sgmm2_4a_mmi_b0.15/decode_it4 exp/tri3b_fmmi_c/decode_it5 exp/combine_sgmm2_4a_mmi_3b_fmmic5/decode || exit 1; |