Blame view

egs/voxforge/s5/run.sh 9.14 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  #!/bin/bash
  
  # Copyright 2012 Vassil Panayotov
  # Apache 2.0
  
  # NOTE: You will want to download the data set first, before executing this script.
  #       This can be done for example by:
  #       1. Setting the variable DATA_ROOT in path.sh to point to a
  #          directory with enough free space (at least 20-25GB
  #          currently (Feb 2014))
  #       2. Running "getdata.sh"
  
  # The second part of this script comes mostly from egs/rm/s5/run.sh
  # with some parameters changed
  
  . ./path.sh || exit 1
  
  # If you have cluster of machines running GridEngine you may want to
  # change the train and decode commands in the file below
  . ./cmd.sh || exit 1
  
  # The number of parallel jobs to be started for some parts of the recipe
  # Make sure you have enough resources(CPUs and RAM) to accomodate this number of jobs
  njobs=2
  
  # This recipe can select subsets of VoxForge's data based on the "Pronunciation dialect"
  # field in VF's etc/README files. To select all dialects, set this to "English"
  dialects="((American)|(British)|(Australia)|(Zealand))"
  
  # The number of randomly selected speakers to be put in the test set
  nspk_test=20
  
  # Test-time language model order
  lm_order=2
  
  # Word position dependent phones?
  pos_dep_phones=true
  
  # The directory below will be used to link to a subset of the user directories
  # based on various criteria(currently just speaker's accent)
  selected=${DATA_ROOT}/selected
  
  # The user of this script could change some of the above parameters. Example:
  # /bin/bash run.sh --pos-dep-phones false
  . utils/parse_options.sh || exit 1
  
  [[ $# -ge 1 ]] && { echo "Unexpected arguments"; exit 1; }
  
  # Select a subset of the data to use
  # WARNING: the destination directory will be deleted if it already exists!
  local/voxforge_select.sh --dialect $dialects \
    ${DATA_ROOT}/extracted ${selected} || exit 1
  
  # Mapping the anonymous speakers to unique IDs
  local/voxforge_map_anonymous.sh ${selected} || exit 1
  
  # Initial normalization of the data
  local/voxforge_data_prep.sh --nspk_test ${nspk_test} ${selected} || exit 1
  
  # Prepare ARPA LM and vocabulary using SRILM
  local/voxforge_prepare_lm.sh --order ${lm_order} || exit 1
  
  # Prepare the lexicon and various phone lists
  # Pronunciations for OOV words are obtained using a pre-trained Sequitur model
  local/voxforge_prepare_dict.sh || exit 1
  
  # Prepare data/lang and data/local/lang directories
  utils/prepare_lang.sh --position-dependent-phones $pos_dep_phones \
    data/local/dict '!SIL' data/local/lang data/lang || exit 1
  
  # Prepare G.fst and data/{train,test} directories
  local/voxforge_format_data.sh || exit 1
  
  # Now make MFCC features.
  # mfccdir should be some place with a largish disk where you
  # want to store MFCC features.
  mfccdir=${DATA_ROOT}/mfcc
  for x in train test; do
   steps/make_mfcc.sh --cmd "$train_cmd" --nj $njobs \
     data/$x exp/make_mfcc/$x $mfccdir || exit 1;
   steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1;
  done
  
  # Train monophone models on a subset of the data
  utils/subset_data_dir.sh data/train 1000 data/train.1k  || exit 1;
  steps/train_mono.sh --nj $njobs --cmd "$train_cmd" data/train.1k data/lang exp/mono  || exit 1;
  
  # Monophone decoding
  utils/mkgraph.sh data/lang_test exp/mono exp/mono/graph || exit 1
  # note: local/decode.sh calls the command line once for each
  # test, and afterwards averages the WERs into (in this case
  # exp/mono/decode/
  steps/decode.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    exp/mono/graph data/test exp/mono/decode
  
  # Get alignments from monophone system.
  steps/align_si.sh --nj $njobs --cmd "$train_cmd" \
    data/train data/lang exp/mono exp/mono_ali || exit 1;
  
  # train tri1 [first triphone pass]
  steps/train_deltas.sh --cmd "$train_cmd" \
    2000 11000 data/train data/lang exp/mono_ali exp/tri1 || exit 1;
  
  # decode tri1
  utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph || exit 1;
  steps/decode.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    exp/tri1/graph data/test exp/tri1/decode
  
  #draw-tree data/lang/phones.txt exp/tri1/tree | dot -Tps -Gsize=8,10.5 | ps2pdf - tree.pdf
  
  # align tri1
  steps/align_si.sh --nj $njobs --cmd "$train_cmd" \
    --use-graphs true data/train data/lang exp/tri1 exp/tri1_ali || exit 1;
  
  # train tri2a [delta+delta-deltas]
  steps/train_deltas.sh --cmd "$train_cmd" 2000 11000 \
    data/train data/lang exp/tri1_ali exp/tri2a || exit 1;
  
  # decode tri2a
  utils/mkgraph.sh data/lang_test exp/tri2a exp/tri2a/graph
  steps/decode.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    exp/tri2a/graph data/test exp/tri2a/decode
  
  # train and decode tri2b [LDA+MLLT]
  steps/train_lda_mllt.sh --cmd "$train_cmd" 2000 11000 \
    data/train data/lang exp/tri1_ali exp/tri2b || exit 1;
  utils/mkgraph.sh data/lang_test exp/tri2b exp/tri2b/graph
  steps/decode.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    exp/tri2b/graph data/test exp/tri2b/decode
  
  # Align all data with LDA+MLLT system (tri2b)
  steps/align_si.sh --nj $njobs --cmd "$train_cmd" --use-graphs true \
     data/train data/lang exp/tri2b exp/tri2b_ali || exit 1;
  
  #  Do MMI on top of LDA+MLLT.
  steps/make_denlats.sh --nj $njobs --cmd "$train_cmd" \
    data/train data/lang exp/tri2b exp/tri2b_denlats || exit 1;
  steps/train_mmi.sh data/train data/lang exp/tri2b_ali exp/tri2b_denlats exp/tri2b_mmi || exit 1;
  steps/decode.sh --config conf/decode.config --iter 4 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mmi/decode_it4
  steps/decode.sh --config conf/decode.config --iter 3 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mmi/decode_it3
  
  # Do the same with boosting.
  steps/train_mmi.sh --boost 0.05 data/train data/lang \
     exp/tri2b_ali exp/tri2b_denlats exp/tri2b_mmi_b0.05 || exit 1;
  steps/decode.sh --config conf/decode.config --iter 4 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mmi_b0.05/decode_it4 || exit 1;
  steps/decode.sh --config conf/decode.config --iter 3 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mmi_b0.05/decode_it3 || exit 1;
  
  # Do MPE.
  steps/train_mpe.sh data/train data/lang exp/tri2b_ali exp/tri2b_denlats exp/tri2b_mpe || exit 1;
  steps/decode.sh --config conf/decode.config --iter 4 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mpe/decode_it4 || exit 1;
  steps/decode.sh --config conf/decode.config --iter 3 --nj $njobs --cmd "$decode_cmd" \
     exp/tri2b/graph data/test exp/tri2b_mpe/decode_it3 || exit 1;
  
  
  ## Do LDA+MLLT+SAT, and decode.
  steps/train_sat.sh 2000 11000 data/train data/lang exp/tri2b_ali exp/tri3b || exit 1;
  utils/mkgraph.sh data/lang_test exp/tri3b exp/tri3b/graph || exit 1;
  steps/decode_fmllr.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    exp/tri3b/graph data/test exp/tri3b/decode || exit 1;
  
  
  # Align all data with LDA+MLLT+SAT system (tri3b)
  steps/align_fmllr.sh --nj $njobs --cmd "$train_cmd" --use-graphs true \
    data/train data/lang exp/tri3b exp/tri3b_ali || exit 1;
  
  ## MMI on top of tri3b (i.e. LDA+MLLT+SAT+MMI)
  steps/make_denlats.sh --config conf/decode.config \
     --nj $njobs --cmd "$train_cmd" --transform-dir exp/tri3b_ali \
    data/train data/lang exp/tri3b exp/tri3b_denlats || exit 1;
  steps/train_mmi.sh data/train data/lang exp/tri3b_ali exp/tri3b_denlats exp/tri3b_mmi || exit 1;
  
  steps/decode_fmllr.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    --alignment-model exp/tri3b/final.alimdl --adapt-model exp/tri3b/final.mdl \
     exp/tri3b/graph data/test exp/tri3b_mmi/decode || exit 1;
  
  # Do a decoding that uses the exp/tri3b/decode directory to get transforms from.
  steps/decode.sh --config conf/decode.config --nj $njobs --cmd "$decode_cmd" \
    --transform-dir exp/tri3b/decode  exp/tri3b/graph data/test exp/tri3b_mmi/decode2 || exit 1;
  
  
  #first, train UBM for fMMI experiments.
  steps/train_diag_ubm.sh --silence-weight 0.5 --nj $njobs --cmd "$train_cmd" \
    250 data/train data/lang exp/tri3b_ali exp/dubm3b
  
  # Next, various fMMI+MMI configurations.
  steps/train_mmi_fmmi.sh --learning-rate 0.0025 \
    --boost 0.1 --cmd "$train_cmd" data/train data/lang exp/tri3b_ali exp/dubm3b exp/tri3b_denlats \
    exp/tri3b_fmmi_b || exit 1;
  
  for iter in 3 4 5 6 7 8; do
   steps/decode_fmmi.sh --nj $njobs --config conf/decode.config --cmd "$decode_cmd" --iter $iter \
     --transform-dir exp/tri3b/decode  exp/tri3b/graph data/test exp/tri3b_fmmi_b/decode_it$iter &
  done
  
  steps/train_mmi_fmmi.sh --learning-rate 0.001 \
    --boost 0.1 --cmd "$train_cmd" data/train data/lang exp/tri3b_ali exp/dubm3b exp/tri3b_denlats \
    exp/tri3b_fmmi_c || exit 1;
  
  for iter in 3 4 5 6 7 8; do
   steps/decode_fmmi.sh --nj $njobs --config conf/decode.config --cmd "$decode_cmd" --iter $iter \
     --transform-dir exp/tri3b/decode  exp/tri3b/graph data/test exp/tri3b_fmmi_c/decode_it$iter &
  done
  
  # for indirect one, use twice the learning rate.
  steps/train_mmi_fmmi_indirect.sh --learning-rate 0.002 --schedule "fmmi fmmi fmmi fmmi mmi mmi mmi mmi" \
    --boost 0.1 --cmd "$train_cmd" data/train data/lang exp/tri3b_ali exp/dubm3b exp/tri3b_denlats \
    exp/tri3b_fmmi_d || exit 1;
  
  for iter in 3 4 5 6 7 8; do
   steps/decode_fmmi.sh --nj $njobs --config conf/decode.config --cmd "$decode_cmd" --iter $iter \
     --transform-dir exp/tri3b/decode  exp/tri3b/graph data/test exp/tri3b_fmmi_d/decode_it$iter &
  done
  
  local/run_sgmm2.sh --nj $njobs