Blame view
egs/wsj/s5/local/chain/e2e/run_tdnn_flatstart.sh
8.44 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
#!/bin/bash # Copyright 2017 Hossein Hadian # This script performs chain training in a flat-start manner # and without building or using any context-dependency tree. # It does not use ivecors or other forms of speaker adaptation. # It is called from run_e2e_phone.sh # Note: this script is configured as phone-based, if you want # to run it in character mode, you'll need to change _nosp # to _char everywhere. # local/chain/compare_wer.sh exp/chain/e2e_tdnnf_1a # System e2e_tdnnf_1a #WER dev93 (tgpr) 8.77 #WER dev93 (tg) 8.11 #WER dev93 (big-dict,tgpr) 6.17 #WER dev93 (big-dict,fg) 5.66 #WER eval92 (tgpr) 5.62 #WER eval92 (tg) 5.19 #WER eval92 (big-dict,tgpr) 3.23 #WER eval92 (big-dict,fg) 2.80 # Final train prob -0.0618 # Final valid prob -0.0825 # Final train prob (xent) # Final valid prob (xent) # Num-params 6772564 # steps/info/chain_dir_info.pl exp/chain/e2e_tdnnf_1a # exp/chain/e2e_tdnnf_1a: num-iters=180 nj=2..8 num-params=6.8M dim=40->84 combine=-0.060->-0.060 (over 3) logprob:train/valid[119,179,final]=(-0.080,-0.062,-0.062/-0.089,-0.083,-0.083) set -e # configs for 'chain' stage=0 train_stage=-10 get_egs_stage=-10 affix=1a # training options dropout_schedule='0,0@0.20,0.5@0.50,0' num_epochs=10 num_jobs_initial=2 num_jobs_final=8 minibatch_size=150=128,64/300=64,32/600=32,16/1200=8 common_egs_dir= l2_regularize=0.00005 frames_per_iter=3000000 cmvn_opts="--norm-means=false --norm-vars=false" train_set=train_si284_spe2e_hires test_sets="test_dev93 test_eval92" # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi lang=data/lang_e2e treedir=exp/chain/e2e_tree # it's actually just a trivial tree (no tree building) dir=exp/chain/e2e_tdnnf_${affix} if [ $stage -le 0 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang_nosp $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 1 ]; then echo "$0: Estimating a phone language model for the denominator graph..." mkdir -p $treedir/log $train_cmd $treedir/log/make_phone_lm.log \ cat data/$train_set/text \| \ steps/nnet3/chain/e2e/text_to_phones.py --between-silprob 0.1 \ data/lang_nosp \| \ utils/sym2int.pl -f 2- data/lang_nosp/phones.txt \| \ chain-est-phone-lm --num-extra-lm-states=2000 \ ark:- $treedir/phone_lm.fst steps/nnet3/chain/e2e/prepare_e2e.sh --nj 30 --cmd "$train_cmd" \ --shared-phones true \ data/$train_set $lang $treedir fi if [ $stage -le 2 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.01" output_opts="l2-regularize=0.005" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input relu-batchnorm-dropout-layer name=tdnn1 input=Append(-1,0,1) $tdnn_opts dim=1024 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 linear-component name=prefinal-l dim=192 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs fi if [ $stage -le 3 ]; then # no need to store the egs in a shared storage because we always # remove them. Anyway, it takes only 5 minutes to generate them. steps/nnet3/chain/e2e/train_e2e.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.cmvn-opts "$cmvn_opts" \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize $l2_regularize \ --chain.apply-deriv-weights false \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter $frames_per_iter \ --trainer.num-epochs $num_epochs \ --trainer.optimization.momentum 0 \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate 0.0005 \ --trainer.optimization.final-effective-lrate 0.00005 \ --trainer.optimization.shrink-value 1.0 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs true \ --feat-dir data/${train_set} \ --tree-dir $treedir \ --dir $dir || exit 1; fi if [ $stage -le 4 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/lang/check_phones_compatible.sh \ data/lang_nosp_test_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_nosp_test_tgpr \ $dir $treedir/graph_tgpr || exit 1; utils/lang/check_phones_compatible.sh \ data/lang_nosp_test_bd_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_nosp_test_bd_tgpr \ $dir $treedir/graph_bd_tgpr || exit 1; fi if [ $stage -le 5 ]; then frames_per_chunk=150 rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nspk=$(wc -l <data/${data}_hires/spk2utt) for lmtype in tgpr bd_tgpr; do steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nspk --cmd "$decode_cmd" --num-threads 4 \ $treedir/graph_${lmtype} data/${data}_hires ${dir}/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh \ --self-loop-scale 1.0 \ --cmd "$decode_cmd" data/lang_nosp_test_{tgpr,tg} \ data/${data}_hires ${dir}/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_nosp_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi echo "Done. Date: $(date). Results:" local/chain/compare_wer.sh $dir |