Blame view
egs/wsj/s5/local/chain/e2e/run_tdnn_lstm_flatstart.sh
8.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
#!/bin/bash # Copyright 2017 Hossein Hadian # This is a TDNN-LSTM recipe that performs chain training in a flat-start manner # Unlike run_tdnn_flatstart.sh which is context-independent, this recipe uses # a full trivial biphone context-dependency tree. This is because this recipe is # meant for character-based (i.e. lexicon-free) modeling where context helps # significantly. # It does not use ivecors or other forms of speaker adaptation. # It is called from run_e2e_char.sh # Note: this script is configured to run as character-based, if you want # to run it in phoneme mode, you'll need to change _char # to _nosp everywhere. # local/chain/compare_wer.sh exp/chain/e2e_tdnn_lstm_bichar_1a # System e2e_tdnn_lstm_bichar_1a #WER dev93 (tgpr) 9.85 #WER dev93 (tg) 9.32 #WER dev93 (big-dict,tgpr) 8.19 #WER dev93 (big-dict,fg) 7.27 #WER eval92 (tgpr) 6.89 #WER eval92 (tg) 6.70 #WER eval92 (big-dict,tgpr) 5.14 #WER eval92 (big-dict,fg) 4.29 # Final train prob -0.0610 # Final valid prob -0.0836 # Final train prob (xent) # Final valid prob (xent) # Num-params 9219188 # steps/info/chain_dir_info.pl exp/chain/e2e_tdnn_lstm_bichar_1a/ # exp/chain/e2e_tdnn_lstm_bichar_1a_nocmvn: num-iters=138 nj=2..5 num-params=9.2M dim=40->3444 combine=-1.211->-1.211 (over 3) logprob:train/valid[91,137,final]=(-0.079,-0.062,-0.061/-0.093,-0.084,-0.084) set -e # configs for 'chain' stage=0 train_stage=-10 get_egs_stage=-10 affix=_1a decode_iter= # training options num_epochs=4.5 num_jobs_initial=2 num_jobs_final=5 minibatch_size=150=128,64/300=64,32/600=32,16/1200=16,8 common_egs_dir= l2_regularize=0.00001 dim=512 frames_per_iter=2500000 cmvn_opts="--norm-means=false --norm-vars=false" train_set=train_si284_spe2e_hires test_sets="test_dev93 test_eval92" chunk_left_context=40 chunk_right_context=0 extra_left_context=50 extra_right_context=0 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi lang=data/lang_e2e_char treedir=exp/chain/e2e_bichar_tree dir=exp/chain/e2e_tdnn_lstm_bichar${affix} if [ $stage -le 0 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang_char $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 1 ]; then echo "$0: Estimating a phone language model for the denominator graph..." mkdir -p $treedir/log $train_cmd $treedir/log/make_phone_lm.log \ cat data/$train_set/text \| \ steps/nnet3/chain/e2e/text_to_phones.py --between-silprob 0.1 \ data/lang_char \| \ utils/sym2int.pl -f 2- data/lang_char/phones.txt \| \ chain-est-phone-lm --num-extra-lm-states=2000 \ ark:- $treedir/phone_lm.fst steps/nnet3/chain/e2e/prepare_e2e.sh --nj 30 --cmd "$train_cmd" \ --type biphone \ --shared-phones true \ data/$train_set $lang $treedir fi if [ $stage -le 2 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') pdim=$[dim/4] npdim=$[dim/4] opts="l2-regularize=0.01" lstm_opts="l2-regularize=0.0025" output_opts="l2-regularize=0.0025" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input relu-batchnorm-layer name=tdnn1 input=Append(-1,0,1) dim=$dim $opts relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=$dim $opts relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=$dim $opts # check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults fast-lstmp-layer name=fastlstm1 cell-dim=$dim recurrent-projection-dim=$pdim non-recurrent-projection-dim=$npdim delay=-3 $lstm_opts relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=$dim $opts relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=$dim $opts fast-lstmp-layer name=fastlstm2 cell-dim=$dim recurrent-projection-dim=$pdim non-recurrent-projection-dim=$npdim delay=-3 $lstm_opts relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=$dim $opts relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=$dim $opts fast-lstmp-layer name=fastlstm3 cell-dim=$dim recurrent-projection-dim=$pdim non-recurrent-projection-dim=$npdim delay=-3 $lstm_opts output-layer name=output include-log-softmax=true dim=$num_targets max-change=1.5 $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 3 ]; then # no need to store the egs in a shared storage because we always # remove them. Anyway, it takes only 5 minutes to generate them. steps/nnet3/chain/e2e/train_e2e.py --stage $train_stage \ --cmd "$train_cmd" \ --feat.cmvn-opts "$cmvn_opts" \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize $l2_regularize \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--normalize-egs true --num-train-egs-combine 800" \ --egs.chunk-left-context $chunk_left_context \ --egs.chunk-right-context $chunk_right_context \ --egs.chunk-left-context-initial 0 \ --egs.chunk-right-context-final 0 \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter $frames_per_iter \ --trainer.num-epochs $num_epochs \ --trainer.deriv-truncate-margin 8 \ --trainer.optimization.momentum 0 \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate 0.001 \ --trainer.optimization.final-effective-lrate 0.0001 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs true \ --cleanup.preserve-model-interval 50 \ --feat-dir data/${train_set} \ --tree-dir $treedir \ --dir $dir || exit 1; fi if [ $stage -le 4 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/lang/check_phones_compatible.sh \ data/lang_char_test_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_char_test_tgpr \ $dir $treedir/graph_tgpr || exit 1; utils/lang/check_phones_compatible.sh \ data/lang_char_test_bd_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_char_test_bd_tgpr \ $dir $treedir/graph_bd_tgpr || exit 1; fi if [ $stage -le 5 ]; then frames_per_chunk=150 rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nspk=$(wc -l <data/${data}_hires/spk2utt) for lmtype in tgpr bd_tgpr; do steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context $chunk_left_context \ --extra-right-context $chunk_right_context \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nspk --cmd "$decode_cmd" --num-threads 4 \ $treedir/graph_${lmtype} data/${data}_hires ${dir}/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh \ --self-loop-scale 1.0 \ --cmd "$decode_cmd" data/lang_char_test_{tgpr,tg} \ data/${data}_hires ${dir}/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_char_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi echo "Done. Date: $(date). Results:" local/chain/compare_wer.sh $dir |