Blame view
egs/wsj/s5/local/chain/tuning/run_tdnn_1g.sh
13.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
#!/bin/bash # 1g is like 1f but upgrading to a "resnet-style TDNN-F model", i.e. # with bypass resnet connections, and re-tuned. # local/chain/compare_wer.sh exp/chain/tdnn1f_sp exp/chain/tdnn1g_sp # System tdnn1f_sp tdnn1g_sp #WER dev93 (tgpr) 7.03 6.68 #WER dev93 (tg) 6.83 6.57 #WER dev93 (big-dict,tgpr) 4.99 4.60 #WER dev93 (big-dict,fg) 4.52 4.26 #WER eval92 (tgpr) 5.19 4.54 #WER eval92 (tg) 4.73 4.32 #WER eval92 (big-dict,tgpr) 2.94 2.62 #WER eval92 (big-dict,fg) 2.68 2.32 # Final train prob -0.0461 -0.0417 # Final valid prob -0.0588 -0.0487 # Final train prob (xent) -0.9042 -0.6461 # Final valid prob (xent) -0.9447 -0.6882 # Num-params 6071244 8354636 # steps/info/chain_dir_info.pl exp/chain/tdnn1g_sp # exp/chain/tdnn1g_sp: num-iters=108 nj=2..8 num-params=8.4M dim=40+100->2854 combine=-0.042->-0.042 (over 2) xent:train/valid[71,107,final]=(-0.975,-0.640,-0.646/-0.980,-0.678,-0.688) logprob:train/valid[71,107,final]=(-0.067,-0.043,-0.042/-0.069,-0.050,-0.049) set -e -o pipefail # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 train_set=train_si284 test_sets="test_dev93 test_eval92" gmm=tri4b # this is the source gmm-dir that we'll use for alignments; it # should have alignments for the specified training data. num_threads_ubm=32 nj_extractor=10 # It runs a JOB with '-pe smp N', where N=$[threads*processes] num_threads_extractor=4 num_processes_extractor=4 nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium. # Options which are not passed through to run_ivector_common.sh affix=1g #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. common_egs_dir= reporting_email= # LSTM/chain options train_stage=-10 xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' # training chunk-options chunk_width=140,100,160 # we don't need extra left/right context for TDNN systems. chunk_left_context=0 chunk_right_context=0 # training options srand=0 remove_egs=true #decode options test_online_decoding=false # if true, it will run the last decoding stage. # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh \ --stage $stage --nj $nj \ --train-set $train_set --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nj-extractor $nj_extractor \ --num-processes-extractor $num_processes_extractor \ --num-threads-extractor $num_threads_extractor \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/${gmm} ali_dir=exp/${gmm}_ali_${train_set}_sp lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats dir=exp/chain${nnet3_affix}/tdnn${affix}_sp train_data_dir=data/${train_set}_sp_hires train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires lores_train_data_dir=data/${train_set}_sp # note: you don't necessarily have to change the treedir name # each time you do a new experiment-- only if you change the # configuration in a way that affects the tree. tree_dir=exp/chain${nnet3_affix}/tree_a_sp # the 'lang' directory is created by this script. # If you create such a directory with a non-standard topology # you should probably name it differently. lang=data/lang_chain for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $gmm_dir/final.mdl \ $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 12 ]; then echo "$0: creating lang directory $lang with chain-type topology" # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] if [ -d $lang ]; then if [ $lang/L.fst -nt data/lang/L.fst ]; then echo "$0: $lang already exists, not overwriting it; continuing" else echo "$0: $lang already exists and seems to be older than data/lang..." echo " ... not sure what to do. Exiting." exit 1; fi else cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi fi if [ $stage -le 13 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \ data/lang $gmm_dir $lat_dir rm $lat_dir/fsts.*.gz # save space fi if [ $stage -le 14 ]; then # Build a tree using our new topology. We know we have alignments for the # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use # those. The num-leaves is always somewhat less than the num-leaves from # the GMM baseline. if [ -f $tree_dir/final.mdl ]; then echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." exit 1; fi steps/nnet3/chain/build_tree.sh \ --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 3500 ${lores_train_data_dir} \ $lang $ali_dir $tree_dir fi if [ $stage -le 15 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print(0.5/$xent_regularize)" | python) tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.01" output_opts="l2-regularize=0.005" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $tdnn_opts dim=1024 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 linear-component name=prefinal-l dim=192 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 16 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage=$train_stage \ --cmd="$decode_cmd" \ --feat.online-ivector-dir=$train_ivector_dir \ --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient=0.1 \ --chain.l2-regularize=0.0 \ --chain.apply-deriv-weights=false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --trainer.srand=$srand \ --trainer.max-param-change=2.0 \ --trainer.num-epochs=10 \ --trainer.frames-per-iter=5000000 \ --trainer.optimization.num-jobs-initial=2 \ --trainer.optimization.num-jobs-final=8 \ --trainer.optimization.initial-effective-lrate=0.0005 \ --trainer.optimization.final-effective-lrate=0.00005 \ --trainer.num-chunk-per-minibatch=128,64 \ --trainer.optimization.momentum=0.0 \ --egs.chunk-width=$chunk_width \ --egs.chunk-left-context=0 \ --egs.chunk-right-context=0 \ --egs.dir="$common_egs_dir" \ --egs.opts="--frames-overlap-per-eg 0" \ --cleanup.remove-egs=$remove_egs \ --use-gpu=true \ --reporting.email="$reporting_email" \ --feat-dir=$train_data_dir \ --tree-dir=$tree_dir \ --lat-dir=$lat_dir \ --dir=$dir || exit 1; fi if [ $stage -le 17 ]; then # The reason we are using data/lang here, instead of $lang, is just to # emphasize that it's not actually important to give mkgraph.sh the # lang directory with the matched topology (since it gets the # topology file from the model). So you could give it a different # lang directory, one that contained a wordlist and LM of your choice, # as long as phones.txt was compatible. utils/lang/check_phones_compatible.sh \ data/lang_test_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_test_tgpr \ $tree_dir $tree_dir/graph_tgpr || exit 1; utils/lang/check_phones_compatible.sh \ data/lang_test_bd_tgpr/phones.txt $lang/phones.txt utils/mkgraph.sh \ --self-loop-scale 1.0 data/lang_test_bd_tgpr \ $tree_dir $tree_dir/graph_bd_tgpr || exit 1; fi if [ $stage -le 18 ]; then frames_per_chunk=$(echo $chunk_width | cut -d, -f1) rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nspk=$(wc -l <data/${data}_hires/spk2utt) for lmtype in tgpr bd_tgpr; do steps/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --extra-left-context 0 --extra-right-context 0 \ --extra-left-context-initial 0 \ --extra-right-context-final 0 \ --frames-per-chunk $frames_per_chunk \ --nj $nspk --cmd "$decode_cmd" --num-threads 4 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \ $tree_dir/graph_${lmtype} data/${data}_hires ${dir}/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh \ --self-loop-scale 1.0 \ --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \ data/${data}_hires ${dir}/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi # Not testing the 'looped' decoding separately, because for # TDNN systems it would give exactly the same results as the # normal decoding. if $test_online_decoding && [ $stage -le 19 ]; then # note: if the features change (e.g. you add pitch features), you will have to # change the options of the following command line. steps/online/nnet3/prepare_online_decoding.sh \ --mfcc-config conf/mfcc_hires.conf \ $lang exp/nnet3${nnet3_affix}/extractor ${dir} ${dir}_online rm $dir/.error 2>/dev/null || true for data in $test_sets; do ( data_affix=$(echo $data | sed s/test_//) nspk=$(wc -l <data/${data}_hires/spk2utt) # note: we just give it "data/${data}" as it only uses the wav.scp, the # feature type does not matter. for lmtype in tgpr bd_tgpr; do steps/online/nnet3/decode.sh \ --acwt 1.0 --post-decode-acwt 10.0 \ --nj $nspk --cmd "$decode_cmd" \ $tree_dir/graph_${lmtype} data/${data} ${dir}_online/decode_${lmtype}_${data_affix} || exit 1 done steps/lmrescore.sh \ --self-loop-scale 1.0 \ --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \ data/${data}_hires ${dir}_online/decode_{tgpr,tg}_${data_affix} || exit 1 steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ data/lang_test_bd_{tgpr,fgconst} \ data/${data}_hires ${dir}_online/decode_${lmtype}_${data_affix}{,_fg} || exit 1 ) || touch $dir/.error & done wait [ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 fi exit 0; |