Blame view
egs/wsj/s5/local/nnet2/run_5c.sh
1.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
#!/bin/bash # This is neural net training on top of adapted 40-dimensional features. # train_stage=-10 use_gpu=true . ./cmd.sh . ./path.sh . utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 dir=exp/nnet5c_gpu else num_threads=16 parallel_opts="--num-threads $num_threads" dir=exp/nnet5c minibatch_size=128 fi if [ ! -f $dir/final.mdl ]; then if [ "$USER" == dpovey ]; then # spread the egs over various machines. will help reduce overload of any # one machine. utils/create_split_dir.pl /export/b0{1,2,3,4}/dpovey/kaldi-pure/egs/wsj/s5/$dir/egs $dir/egs/storage fi steps/nnet2/train_tanh_fast.sh --stage $train_stage \ --num-threads "$num_threads" \ --parallel-opts "$parallel_opts" \ --minibatch-size "$minibatch_size" \ --num-jobs-nnet 8 \ --samples-per-iter 400000 \ --mix-up 8000 \ --initial-learning-rate 0.01 --final-learning-rate 0.001 \ --num-hidden-layers 4 --hidden-layer-dim 1024 \ --cmd "$decode_cmd" \ data/train_si284 data/lang exp/tri4b_ali_si284 $dir || exit 1 fi steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 \ --transform-dir exp/tri4b/decode_bd_tgpr_dev93 \ exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93 & steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 \ --transform-dir exp/tri4b/decode_bd_tgpr_eval92 \ exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92 wait |