Blame view
egs/wsj/s5/local/nnet2/run_5c2_gpu.sh
1.74 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
#!/bin/bash # This is neural net training on top of adapted 40-dimensional features. # This is an alternative to the run_5c_gpu.sh that will train faster if you # have 8 gpus because it uses more jobs, but the results are slightly worse. # [note: possibly we could raise the learning rate and match the run_5c_gpu.sh # results.] train_stage=-100 temp_dir= # e.g. --temp-dir /export/m1-02/dpovey/kaldi-dan2/egs/wsj/s5/ parallel_opts="--gpu 1" # This is suitable for the CLSP network, you'll likely have to change it. dir=exp/nnet5c2_gpu # Note: since we multiplied the num-jobs by 1/4, we halved the # learning rate, relative to run_5c.sh . ././cmd.sh . ./path.sh ! cuda-compiled && cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF . utils/parse_options.sh ( if [ ! -z "$temp_dir" ] && [ ! -e $dir/egs ]; then mkdir -p $dir mkdir -p $temp_dir/$dir/egs ln -s $temp_dir/$dir/egs $dir/ fi steps/nnet2/train_tanh.sh \ --num-jobs-nnet 8 --num-threads 1 --parallel-opts "$parallel_opts" \ --mix-up 8000 \ --initial-learning-rate 0.0075 --final-learning-rate 0.00075 \ --num-hidden-layers 4 --hidden-layer-dim 1024 \ --cmd "$decode_cmd" \ data/train_si284 data/lang exp/tri4b_ali_si284 $dir || exit 1 steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 \ --transform-dir exp/tri4b/decode_bd_tgpr_dev93 \ exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93 steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 \ --transform-dir exp/tri4b/decode_bd_tgpr_eval92 \ exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92 ) |