Blame view
egs/wsj/s5/local/online/run_nnet2_baseline.sh
2.44 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
#!/bin/bash . ./cmd.sh stage=1 train_stage=-10 use_gpu=true . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 # the _a is in case I want to change the parameters. dir=exp/nnet2_online/nnet_a_gpu_baseline else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" dir=exp/nnet2_online/nnet_a_baseline fi if [ $stage -le 1 ]; then # train without iVectors. steps/nnet2/train_pnorm_fast.sh --stage $train_stage \ --num-epochs 8 --num-epochs-extra 4 \ --splice-width 7 --feat-type raw \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --num-jobs-nnet 6 \ --num-hidden-layers 4 \ --mix-up 4000 \ --initial-learning-rate 0.02 --final-learning-rate 0.004 \ --cmd "$decode_cmd" \ --pnorm-input-dim 2400 \ --pnorm-output-dim 300 \ data/train_si284 data/lang exp/tri4b_ali_si284 $dir || exit 1; fi if [ $stage -le 2 ]; then for lm_suffix in tgpr bd_tgpr; do graph_dir=exp/tri4b/graph_${lm_suffix} # use already-built graphs. for year in eval92 dev93; do steps/nnet2/decode.sh --nj 8 --cmd "$decode_cmd" \ $graph_dir data/test_$year $dir/decode_${lm_suffix}_${year} || exit 1; done done fi if [ $stage -le 3 ]; then # If this setup used PLP features, we'd have to give the option --feature-type plp # to the script below. steps/online/nnet2/prepare_online_decoding.sh data/lang "$dir" ${dir}_online || exit 1; fi if [ $stage -le 4 ]; then # Decode. The --per-utt true option makes no difference to the results here. for lm_suffix in tgpr bd_tgpr; do graph_dir=exp/tri4b/graph_${lm_suffix} for year in eval92 dev93; do steps/online/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 \ --per-utt true \ "$graph_dir" data/test_${year} ${dir}_online/decode_${lm_suffix}_${year}_utt || exit 1; done done fi |