Blame view

egs/wsj/s5/local/online/run_nnet2_discriminative.sh 3.15 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  #!/bin/bash
  
  
  # This is discriminative training, to be run after run_nnet2.sh.
  
  . ./cmd.sh
  
  
  stage=1
  train_stage=-10
  use_gpu=true
  srcdir=exp/nnet2_online/nnet_ms_a
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    gpu_opts="--gpu 1"
    train_parallel_opts="--gpu 1"
    num_threads=1
    # the _a is in case I want to change the parameters.
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    gpu_opts=""
    num_threads=16
    train_parallel_opts="--num-threads 16"
  fi
  
  nj=40
  
  if [ $stage -le 1 ]; then
  
    # the make_denlats job is always done on CPU not GPU, since in any case
    # the graph search and lattice determinization takes quite a bit of CPU.
    # note: it's the sub-split option that determinies how many jobs actually
    # run at one time.
    steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \
        --nj $nj --sub-split 40 --num-threads 6 --parallel-opts "--num-threads 6" \
        --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \
        data/train_si284_hires data/lang $srcdir ${srcdir}_denlats
  fi
  
  if [ $stage -le 2 ]; then
    if $use_gpu; then gpu_opt=yes; else gpu_opt=no; fi
    steps/nnet2/align.sh  --cmd "$decode_cmd $gpu_opts" \
        --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \
        --use-gpu $gpu_opt \
        --nj $nj data/train_si284_hires data/lang ${srcdir} ${srcdir}_ali  || exit 1;
  fi
  
  if [ $stage -le 3 ]; then
    steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.0002 \
      --stage $train_stage \
      --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \
      --num-jobs-nnet 4  --num-threads $num_threads --parallel-opts "$gpu_opts" \
      data/train_si284_hires data/lang \
      ${srcdir}_ali ${srcdir}_denlats ${srcdir}/final.mdl ${srcdir}_smbr || exit 1;
  fi
  
  if [ $stage -le 4 ]; then
    # we'll do the decoding as 'online' decoding by using the existing
    # _online directory but with extra models copied to it.
    for epoch in 1 2 3 4; do
      cp ${srcdir}_smbr/epoch${epoch}.mdl ${srcdir}_online/smbr_epoch${epoch}.mdl
    done
  
    error_file=$(dirname $srcdir)/.error.decode_smbr
    rm $error_file 2>/dev/null || true
  
    for epoch in 1 2 3 4; do
      # do the actual online decoding with iVectors, carrying info forward from
      # previous utterances of the same speaker.
      # We just do the bd_tgpr decodes; otherwise the number of combinations
      # starts to get very large.
      for lm_suffix in bd_tgpr; do
        graph_dir=exp/tri4b/graph_${lm_suffix}
        for year in eval92 dev93; do
          steps/online/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 --iter smbr_epoch${epoch} \
            "$graph_dir" data/test_${year} ${srcdir}_online/decode_${lm_suffix}_${year}_smbr_epoch${epoch} || touch $error_file &
        done
      done
    done
    wait
    [ -f $error_file ] && echo "$0: error decoding the SMBR systems." && exit 1;
  fi