Blame view
egs/wsj/s5/local/online/run_nnet2_discriminative.sh
3.15 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
#!/bin/bash # This is discriminative training, to be run after run_nnet2.sh. . ./cmd.sh stage=1 train_stage=-10 use_gpu=true srcdir=exp/nnet2_online/nnet_ms_a . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi gpu_opts="--gpu 1" train_parallel_opts="--gpu 1" num_threads=1 # the _a is in case I want to change the parameters. else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. gpu_opts="" num_threads=16 train_parallel_opts="--num-threads 16" fi nj=40 if [ $stage -le 1 ]; then # the make_denlats job is always done on CPU not GPU, since in any case # the graph search and lattice determinization takes quite a bit of CPU. # note: it's the sub-split option that determinies how many jobs actually # run at one time. steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \ --nj $nj --sub-split 40 --num-threads 6 --parallel-opts "--num-threads 6" \ --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \ data/train_si284_hires data/lang $srcdir ${srcdir}_denlats fi if [ $stage -le 2 ]; then if $use_gpu; then gpu_opt=yes; else gpu_opt=no; fi steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" \ --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \ --use-gpu $gpu_opt \ --nj $nj data/train_si284_hires data/lang ${srcdir} ${srcdir}_ali || exit 1; fi if [ $stage -le 3 ]; then steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.0002 \ --stage $train_stage \ --online-ivector-dir exp/nnet2_online/ivectors_train_si284 \ --num-jobs-nnet 4 --num-threads $num_threads --parallel-opts "$gpu_opts" \ data/train_si284_hires data/lang \ ${srcdir}_ali ${srcdir}_denlats ${srcdir}/final.mdl ${srcdir}_smbr || exit 1; fi if [ $stage -le 4 ]; then # we'll do the decoding as 'online' decoding by using the existing # _online directory but with extra models copied to it. for epoch in 1 2 3 4; do cp ${srcdir}_smbr/epoch${epoch}.mdl ${srcdir}_online/smbr_epoch${epoch}.mdl done error_file=$(dirname $srcdir)/.error.decode_smbr rm $error_file 2>/dev/null || true for epoch in 1 2 3 4; do # do the actual online decoding with iVectors, carrying info forward from # previous utterances of the same speaker. # We just do the bd_tgpr decodes; otherwise the number of combinations # starts to get very large. for lm_suffix in bd_tgpr; do graph_dir=exp/tri4b/graph_${lm_suffix} for year in eval92 dev93; do steps/online/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 --iter smbr_epoch${epoch} \ "$graph_dir" data/test_${year} ${srcdir}_online/decode_${lm_suffix}_${year}_smbr_epoch${epoch} || touch $error_file & done done done wait [ -f $error_file ] && echo "$0: error decoding the SMBR systems." && exit 1; fi |