Blame view
egs/wsj/s5/local/online/run_nnet2_perturb_speed.sh
5.64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
#!/bin/bash # Copyright 2013 Johns Hopkins University (author: Daniel Povey) # 2014 Tom Ko # Apache 2.0 # This example script demonstrates how speed perturbation of the data helps the nnet training. . ./cmd.sh . ./path.sh stage=-1 train_stage=-10 use_gpu=true nnet_dir=exp/nnet2_online_perturb if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 # the _a is in case I want to change the parameters. dir=$nnet_dir/nnet_a_gpu else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" dir=$nnet_dir/nnet_a fi if [ $stage -le -1 ]; then utils/perturb_data_dir_speed.sh 0.9 data/train_si284 data/train_si284temp1 utils/perturb_data_dir_speed.sh 1.0 data/train_si284 data/train_si284temp2 utils/perturb_data_dir_speed.sh 1.1 data/train_si284 data/train_si284temp3 utils/combine_data.sh data/train_si284p data/train_si284temp1 data/train_si284temp2 data/train_si284temp3 rm -r data/train_si284temp1 data/train_si284temp2 data/train_si284temp3 mfccdir=mfcc_perturbed for x in train_si284p; do steps/make_mfcc.sh --cmd "$train_cmd" --nj 20 \ data/$x exp/make_mfcc/$x $mfccdir || exit 1; steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1; done fi if [ $stage -le 0 ]; then steps/align_fmllr.sh --nj 30 --cmd "$train_cmd" \ data/train_si284p data/lang exp/tri4b exp/tri4b_ali_si284p || exit 1; fi if [ $stage -le 1 ]; then mkdir -p $nnet_dir # To train a diagonal UBM we don't need very much data, so use just the si84 data. # the tri3b is the input dir; the choice of this is not critical as we just use # it for the LDA matrix. Since the iVectors don't make a great deal of difference, # we'll use 256 Gaussians for speed. steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 30 --num-frames 200000 \ data/train_si84 256 exp/tri3b $nnet_dir/diag_ubm fi if [ $stage -le 2 ]; then # even though $nj is just 10, each job uses multiple processes and threads. steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj 10 \ data/train_si284p $nnet_dir/diag_ubm $nnet_dir/extractor || exit 1; fi if [ $stage -le 3 ]; then steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \ data/train_si284p $nnet_dir/extractor $nnet_dir/ivectors_train_si284p || exit 1; fi if [ $stage -le 4 ]; then steps/nnet2/train_pnorm_simple2.sh --stage $train_stage \ --online-ivector-dir $nnet_dir/ivectors_train_si284p \ --num-epochs 4 \ --splice-width 7 --feat-type raw \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --num-jobs-nnet 6 \ --num-hidden-layers 4 \ --mix-up 4000 \ --initial-learning-rate 0.02 --final-learning-rate 0.004 \ --cmd "$decode_cmd" \ --pnorm-input-dim 2400 \ --pnorm-output-dim 300 \ date/train_si284p data/lang exp/tri4b_ali_si284p $dir || exit 1; fi if [ $stage -le 5 ]; then for data in test_eval92 test_dev93 test_eval93; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 8 \ data/${data} $nnet_dir/extractor $nnet_dir/ivectors_${data} || exit 1; done fi if [ $stage -le 6 ]; then # this does offline decoding that should give the same results as the real # online decoding. for lm_suffix in tgpr bd_tgpr; do graph_dir=exp/tri4b/graph_${lm_suffix} # use already-built graphs. for year in eval92 eval93 dev93; do steps/nnet2/decode.sh --nj 8 --cmd "$decode_cmd" \ --online-ivector-dir $nnet_dir/ivectors_test_$year \ $graph_dir data/test_$year $dir/decode_${lm_suffix}_${year} || exit 1; done done fi # Here are the results. # First, this is the baseline. # This is obtained from running the offline decoding in run_nnet2.sh which calls steps/nnet2/train_pnorm_simple2.sh # %WER 7.91 [ 651 / 8234, 79 ins, 102 del, 470 sub ] exp/nnet2_online/nnet_a_gpu/decode_bd_tgpr_dev93/wer_11 # %WER 4.29 [ 242 / 5643, 38 ins, 9 del, 195 sub ] exp/nnet2_online/nnet_a_gpu/decode_bd_tgpr_eval92/wer_9 # %WER 6.87 [ 237 / 3448, 21 ins, 45 del, 171 sub ] exp/nnet2_online/nnet_a_gpu/decode_bd_tgpr_eval93/wer_10 # %WER 10.19 [ 839 / 8234, 177 ins, 96 del, 566 sub ] exp/nnet2_online/nnet_a_gpu/decode_tgpr_dev93/wer_12 # %WER 6.79 [ 383 / 5643, 101 ins, 13 del, 269 sub ] exp/nnet2_online/nnet_a_gpu/decode_tgpr_eval92/wer_10 # %WER 8.64 [ 298 / 3448, 38 ins, 41 del, 219 sub ] exp/nnet2_online/nnet_a_gpu/decode_tgpr_eval93/wer_11 # Then this is the result obtained from this script. # %WER 7.30 [ 601 / 8234, 64 ins, 102 del, 435 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_bd_tgpr_dev93/wer_13 # %WER 4.15 [ 234 / 5643, 39 ins, 11 del, 184 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_bd_tgpr_eval92/wer_9 # %WER 6.41 [ 221 / 3448, 15 ins, 39 del, 167 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_bd_tgpr_eval93/wer_11 # %WER 9.85 [ 811 / 8234, 187 ins, 72 del, 552 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_tgpr_dev93/wer_10 # %WER 6.63 [ 374 / 5643, 88 ins, 16 del, 270 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_tgpr_eval92/wer_13 # %WER 8.06 [ 278 / 3448, 42 ins, 32 del, 204 sub ] exp/nnet2_online_perturb/nnet_a_gpu/decode_tgpr_eval93/wer_10 |