Blame view
egs/wsj/s5/local/rnnlm/tuning/run_tdnn_a.sh
3.76 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (author: Daniel Povey) Tony Robinson # 2015 Guoguo Chen # This script trains LMs on the WSJ LM-training data. # It requires that you have already run wsj_extend_dict.sh, # to get the larger-size dictionary including all of CMUdict # plus any OOVs and possible acronyms that we could easily # derive pronunciations for. # rnnlm/train_rnnlm.sh: best iteration (out of 40) was 39, linking it to final iteration. # Train objf: -1225.00 -5.50 -5.29 -5.17 -5.09 -5.02 -4.97 -4.92 -4.88 -4.84 -4.79 -4.78 -4.76 -4.74 -4.73 -4.72 -4.71 -4.70 -4.68 -4.67 -4.66 -4.65 -4.64 -4.63 -4.62 -4.61 -4.60 -4.59 -4.58 -4.58 -4.57 -4.56 -4.56 -4.56 -4.56 -4.55 -4.55 -4.55 -4.54 -4.50 # Dev objf: -11.89 -5.69 -5.40 -5.26 -5.19 -5.14 -5.10 -5.08 -5.06 -5.04 -4.95 -5.03 -4.93 -4.91 -4.90 -4.89 -4.88 -4.88 -4.87 -4.86 -4.85 -4.85 -4.84 -4.84 -4.84 -4.83 -4.83 -4.83 -4.83 -4.83 -4.83 -4.83 -4.79 -4.78 -4.78 -4.77 -4.76 -4.76 -4.76 -4.76 -4.75 # This script takes no command-line arguments but takes the --cmd option. # Begin configuration section. cmd=run.pl dir=exp/rnnlm_tdnn_a embedding_dim=600 stage=0 train_stage=0 . utils/parse_options.sh text=data/local/dict_nosp_larger/cleaned.gz lexicon=data/local/dict_nosp_larger/lexiconp.txt text_dir=data/rnnlm/text_nosp mkdir -p $dir/config set -e for f in $text $lexicon; do [ ! -f $f ] && \ echo "$0: expected file $f to exist; search for local/wsj_extend_dict.sh in run.sh" && exit 1 done if [ $stage -le 0 ]; then mkdir -p $text_dir echo -n >$text_dir/dev.txt # hold out one in every 500 lines as dev data. gunzip -c data/local/dict_nosp_larger/cleaned.gz | awk -v text_dir=$text_dir '{if(NR%500 == 0) { print >text_dir"/dev.txt"; } else {print;}}' >$text_dir/wsj.txt fi if [ $stage -le 1 ]; then # the training scripts require that <s>, </s> and <brk> be present in a particular # order. awk '{print $1}' $lexicon | sort | uniq | \ awk 'BEGIN{print "<eps> 0";print "<s> 1"; print "</s> 2"; print "<brk> 3";n=4;} {print $1, n++}' \ >$dir/config/words.txt # words that are not present in words.txt but are in the training or dev data, will be # mapped to <SPOKEN_NOISE> during training. echo "<SPOKEN_NOISE>" >$dir/config/oov.txt cat > $dir/config/data_weights.txt <<EOF wsj 1 1.0 EOF rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \ --unk-word="<SPOKEN_NOISE>" \ --data-weights-file=$dir/config/data_weights.txt \ $text_dir >$dir/config/unigram_probs.txt # choose features rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \ --use-constant-feature=true \ --special-words='<s>,</s>,<brk>,<SPOKEN_NOISE>' \ $dir/config/words.txt > $dir/config/features.txt cat >$dir/config/xconfig <<EOF input dim=$embedding_dim name=input relu-renorm-layer name=tdnn1 dim=600 input=Append(0, IfDefined(-1)) relu-renorm-layer name=tdnn2 dim=600 input=Append(0, IfDefined(-1)) relu-renorm-layer name=tdnn3 dim=600 input=Append(0, IfDefined(-2)) output-layer name=output include-log-softmax=false dim=$embedding_dim EOF rnnlm/validate_config_dir.sh $text_dir $dir/config fi if [ $stage -le 2 ]; then # the --unigram-factor option is set larger than the default (100) # in order to reduce the size of the sampling LM, because rnnlm-get-egs # was taking up too much CPU (as much as 10 cores). rnnlm/prepare_rnnlm_dir.sh --unigram-factor 200.0 \ $text_dir $dir/config $dir fi if [ $stage -le 3 ]; then rnnlm/train_rnnlm.sh --num-jobs-initial 1 --num-jobs-final 3 \ --stage $train_stage --num-epochs 10 --cmd "queue.pl" $dir fi exit 0 |