Blame view

egs/wsj/s5/local/run_rnnlms.sh 2.74 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  #!/bin/bash
  
  . ./cmd.sh
  . ./path.sh
  
  # This script demonstrates how you can train rnnlms, and how you can use them to
  # rescore the n-best lists, or lattices.
  # Be careful: appending things like "--mem 16G" to $decode_cmd won't always
  # work, it depends what $decode_cmd is.
  
  # Trains Tomas Mikolov's version, which takes roughly 5 days with the following
  # parameter setting. We start from the dictionary directory without silence
  # probabilities (with suffix "_nosp").
  rm data/local/rnnlm.h300.voc40k/.error 2>/dev/null
  local/wsj_train_rnnlms.sh --dict-suffix "_nosp" \
    --cmd "$decode_cmd --mem 16G" \
    --hidden 300 --nwords 40000 --class 400 \
    --direct 2000 data/local/rnnlm.h300.voc40k \
    || touch data/local/rnnlm.h300.voc40k/.error &
  
  # Trains Yandex's version, which takes roughly 10 hours with the following
  # parameter setting. We start from the dictionary directory without silence
  # probabilities (with suffix "_nosp").
  num_threads_rnnlm=8
  rm data/local/rnnlm-hs.nce20.h400.voc40k/.error 2>/dev/null
  local/wsj_train_rnnlms.sh --dict-suffix "_nosp" \
    --rnnlm_ver faster-rnnlm --threads $num_threads_rnnlm \
    --cmd "$decode_cmd --mem 8G --num-threads $num_threads_rnnlm" \
    --bptt 4 --bptt-block 10 --hidden 400 --nwords 40000 --direct 2000 \
    --rnnlm-options "-direct-order 4 -nce 20" \
    data/local/rnnlm-hs.nce20.h400.voc40k \
    || touch data/local/rnnlm-hs.nce20.h400.voc40k/.error &
  
  wait;
  
  # Rescoring. We demonstrate results on the TDNN models. Make sure you have
  # finished running the following scripts:
  #   local/online/run_nnet2.sh
  #   local/online/run_nnet2_baseline.sh
  #   local/online/run_nnet2_discriminative.sh
  for lm_suffix in tgpr bd_tgpr; do
    graph_dir=exp/tri4b/graph_${lm_suffix}
    for year in eval92 dev93; do
      decode_dir=exp/nnet2_online/nnet_ms_a_online/decode_${lm_suffix}_${year}
  
      # N-best rescoring with Tomas Mikolov's version.
      steps/rnnlmrescore.sh \
        --N 1000 --cmd "$decode_cmd --mem 16G" --inv-acwt 10 0.75 \
        data/lang_test_${lm_suffix} data/local/rnnlm.h300.voc40k \
        data/test_${year} ${decode_dir} \
        ${decode_dir}_rnnlm.h300.voc40k || exit 1;
  
      # Lattice rescoring with Tomas Mikolov's version.
      steps/lmrescore_rnnlm_lat.sh \
        --weight 0.75 --cmd "$decode_cmd --mem 16G" --max-ngram-order 5 \
        data/lang_test_${lm_suffix} data/local/rnnlm.h300.voc40k \
        data/test_${year} ${decode_dir} \
        ${decode_dir}_rnnlm.h300.voc40k_lat || exit 1;
  
      # N-best rescoring with Yandex's version.
      steps/rnnlmrescore.sh --rnnlm_ver faster-rnnlm \
        --N 1000 --cmd "$decode_cmd --mem 8G" --inv-acwt 10 0.75 \
        data/lang_test_${lm_suffix} data/local/rnnlm-hs.nce20.h400.voc40k \
        data/test_${year} ${decode_dir} \
        ${decode_dir}_rnnlm-hs.nce20.h400.voc40k || exit 1;
    done
  done