Blame view
egs/wsj/s5/local/run_rnnlms.sh
2.74 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
#!/bin/bash . ./cmd.sh . ./path.sh # This script demonstrates how you can train rnnlms, and how you can use them to # rescore the n-best lists, or lattices. # Be careful: appending things like "--mem 16G" to $decode_cmd won't always # work, it depends what $decode_cmd is. # Trains Tomas Mikolov's version, which takes roughly 5 days with the following # parameter setting. We start from the dictionary directory without silence # probabilities (with suffix "_nosp"). rm data/local/rnnlm.h300.voc40k/.error 2>/dev/null local/wsj_train_rnnlms.sh --dict-suffix "_nosp" \ --cmd "$decode_cmd --mem 16G" \ --hidden 300 --nwords 40000 --class 400 \ --direct 2000 data/local/rnnlm.h300.voc40k \ || touch data/local/rnnlm.h300.voc40k/.error & # Trains Yandex's version, which takes roughly 10 hours with the following # parameter setting. We start from the dictionary directory without silence # probabilities (with suffix "_nosp"). num_threads_rnnlm=8 rm data/local/rnnlm-hs.nce20.h400.voc40k/.error 2>/dev/null local/wsj_train_rnnlms.sh --dict-suffix "_nosp" \ --rnnlm_ver faster-rnnlm --threads $num_threads_rnnlm \ --cmd "$decode_cmd --mem 8G --num-threads $num_threads_rnnlm" \ --bptt 4 --bptt-block 10 --hidden 400 --nwords 40000 --direct 2000 \ --rnnlm-options "-direct-order 4 -nce 20" \ data/local/rnnlm-hs.nce20.h400.voc40k \ || touch data/local/rnnlm-hs.nce20.h400.voc40k/.error & wait; # Rescoring. We demonstrate results on the TDNN models. Make sure you have # finished running the following scripts: # local/online/run_nnet2.sh # local/online/run_nnet2_baseline.sh # local/online/run_nnet2_discriminative.sh for lm_suffix in tgpr bd_tgpr; do graph_dir=exp/tri4b/graph_${lm_suffix} for year in eval92 dev93; do decode_dir=exp/nnet2_online/nnet_ms_a_online/decode_${lm_suffix}_${year} # N-best rescoring with Tomas Mikolov's version. steps/rnnlmrescore.sh \ --N 1000 --cmd "$decode_cmd --mem 16G" --inv-acwt 10 0.75 \ data/lang_test_${lm_suffix} data/local/rnnlm.h300.voc40k \ data/test_${year} ${decode_dir} \ ${decode_dir}_rnnlm.h300.voc40k || exit 1; # Lattice rescoring with Tomas Mikolov's version. steps/lmrescore_rnnlm_lat.sh \ --weight 0.75 --cmd "$decode_cmd --mem 16G" --max-ngram-order 5 \ data/lang_test_${lm_suffix} data/local/rnnlm.h300.voc40k \ data/test_${year} ${decode_dir} \ ${decode_dir}_rnnlm.h300.voc40k_lat || exit 1; # N-best rescoring with Yandex's version. steps/rnnlmrescore.sh --rnnlm_ver faster-rnnlm \ --N 1000 --cmd "$decode_cmd --mem 8G" --inv-acwt 10 0.75 \ data/lang_test_${lm_suffix} data/local/rnnlm-hs.nce20.h400.voc40k \ data/test_${year} ${decode_dir} \ ${decode_dir}_rnnlm-hs.nce20.h400.voc40k || exit 1; done done |