Blame view
egs/wsj/s5/local/run_segmentation_long_utts.sh
11 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
#!/bin/bash # Copyright 2016 Vimal Manohar # Apache 2.0 set -e -o pipefail # This script demonstrates how to re-segment long audios into short segments. # The basic idea is to decode with an existing in-domain acoustic model, and a # bigram language model built from the reference, and then work out the # segmentation from a ctm like file. # This is similar to the script local/run_segmentation.sh, but # uses a more sophesticated approach using Smith-Waterman alignment # to align decoded hypothesis and parts of imperfect long-transcripts # retrieved using TF-IDF document similarities. ## %WER results. ## Baseline with manual transcripts # %WER 7.87 [ 444 / 5643, 114 ins, 25 del, 305 sub ] exp/tri4a/decode_nosp_tgpr_eval92/wer_13_1.0 # %WER 11.84 [ 975 / 8234, 187 ins, 107 del, 681 sub ] exp/tri4a/decode_nosp_tgpr_dev93/wer_17_0.5 ## Baseline using local/run_segmentation.sh # %WER 7.76 [ 438 / 5643, 119 ins, 22 del, 297 sub ] exp/tri4c/decode_tgpr_eval92/wer_14_0.5 # %WER 12.41 [ 1022 / 8234, 216 ins, 96 del, 710 sub ] exp/tri4c/decode_tgpr_dev93/wer_17_0.0 ## Training directly on segmented data directory train_si284_reseg # %WER 7.69 [ 434 / 5643, 105 ins, 27 del, 302 sub ] exp/tri3c_reseg_d/decode_nosp_tgpr_eval92/wer_15_0.5 # %WER 7.78 [ 439 / 5643, 105 ins, 20 del, 314 sub ] exp/tri4c_reseg_d/decode_nosp_tgpr_eval92/wer_15_0.5 # %WER 7.43 [ 419 / 5643, 95 ins, 29 del, 295 sub ] exp/tri4c_reseg_e/decode_nosp_tgpr_eval92/wer_16_1.0 # %WER 12.04 [ 991 / 8234, 187 ins, 119 del, 685 sub ] exp/tri4c_reseg_d/decode_nosp_tgpr_dev93/wer_16_1.0 # %WER 12.29 [ 1012 / 8234, 224 ins, 105 del, 683 sub ] exp/tri3c_reseg_d/decode_nosp_tgpr_dev93/wer_14_0.5 # %WER 12.08 [ 995 / 8234, 199 ins, 113 del, 683 sub ] exp/tri4c_reseg_e/decode_nosp_tgpr_dev93/wer_16_0.5 ## Using additional stage of cleanup. # %WER 7.71 [ 435 / 5643, 100 ins, 33 del, 302 sub ] exp/tri4d_e_cleaned_a/decode_nosp_tgpr_eval92/wer_16_1.0 # %WER 7.78 [ 439 / 5643, 109 ins, 18 del, 312 sub ] exp/tri4d_e_cleaned_c/decode_nosp_tgpr_eval92/wer_15_0.5 # %WER 7.73 [ 436 / 5643, 116 ins, 21 del, 299 sub ] exp/tri4d_e_cleaned_b/decode_nosp_tgpr_eval92/wer_15_0.5 # %WER 11.97 [ 986 / 8234, 190 ins, 110 del, 686 sub ] exp/tri4d_e_cleaned_c/decode_nosp_tgpr_dev93/wer_15_1.0 # %WER 12.13 [ 999 / 8234, 211 ins, 102 del, 686 sub ] exp/tri4d_e_cleaned_a/decode_nosp_tgpr_dev93/wer_15_0.5 # %WER 12.67 [ 1043 / 8234, 217 ins, 121 del, 705 sub ] exp/tri4d_e_cleaned_b/decode_nosp_tgpr_dev93/wer_15_1.0 . ./cmd.sh . ./path.sh segment_stage=-1 affix=_e ############################################################################### ## Simulate unsegmented data directory. ############################################################################### local/append_utterances.sh data/train_si284 data/train_si284_long steps/make_mfcc.sh --cmd "$train_cmd" --nj 32 \ data/train_si284_long exp/make_mfcc/train_si284_long mfcc || exit 1 steps/compute_cmvn_stats.sh data/train_si284_long \ exp/make_mfcc/train_si284_long mfcc ############################################################################### # Segment long recordings using TF-IDF retrieval of reference text # for uniformly segmented audio chunks based on Smith-Waterman alignment. # Use a model trained on train_si84 (tri2b) ############################################################################### steps/cleanup/segment_long_utterances.sh --cmd "$train_cmd" \ --stage $segment_stage \ --config conf/segment_long_utts.conf \ --max-segment-duration 30 --overlap-duration 5 \ --num-neighbors-to-search 0 --nj 80 \ exp/tri2b data/lang_nosp data/train_si284_long data/train_si284_reseg${affix} \ exp/segment_long_utts${affix}_train_si284 steps/compute_cmvn_stats.sh data/train_si284_reseg${affix} \ exp/make_mfcc/train_si284_reseg${affix} mfcc utils/fix_data_dir.sh data/train_si284_reseg${affix} ############################################################################### # Train new model on segmented data directory starting from the same model # used for segmentation. (tri2b) ############################################################################### # Align tri2b system with reseg${affix} data steps/align_si.sh --nj 40 --cmd "$train_cmd" \ data/train_si284_reseg${affix} \ data/lang_nosp exp/tri2b exp/tri2b_ali_si284_reseg${affix} || exit 1; # Train SAT system on reseg data steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_si284_reseg${affix} data/lang_nosp \ exp/tri2b_ali_si284_reseg${affix} exp/tri3c_reseg${affix} ( utils/mkgraph.sh data/lang_nosp_test_tgpr \ exp/tri3c_reseg${affix} exp/tri3c_reseg${affix}/graph_nosp_tgpr || exit 1; steps/decode_fmllr.sh --nj 10 --cmd "$decode_cmd" \ exp/tri3c_reseg${affix}/graph_nosp_tgpr data/test_dev93 \ exp/tri3c_reseg${affix}/decode_nosp_tgpr_dev93 || exit 1; steps/decode_fmllr.sh --nj 8 --cmd "$decode_cmd" \ exp/tri3c_reseg${affix}/graph_nosp_tgpr data/test_eval92 \ exp/tri3c_reseg${affix}/decode_nosp_tgpr_eval92 || exit 1; ) & ############################################################################### # Train new model on segmented data directory starting from a better model # (tri3b) ############################################################################### # Align tri3b system with reseg data steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_si284_reseg${affix} data/lang_nosp exp/tri3b \ exp/tri3b_ali_si284_reseg${affix} # Train SAT system on reseg data steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_si284_reseg${affix} data/lang_nosp \ exp/tri3b_ali_si284_reseg${affix} exp/tri4c_reseg${affix} ( utils/mkgraph.sh data/lang_nosp_test_tgpr \ exp/tri4c_reseg${affix} exp/tri4c_reseg${affix}/graph_nosp_tgpr || exit 1; steps/decode_fmllr.sh --nj 10 --cmd "$decode_cmd" \ exp/tri4c_reseg${affix}/graph_nosp_tgpr data/test_dev93 \ exp/tri4c_reseg${affix}/decode_nosp_tgpr_dev93 || exit 1; steps/decode_fmllr.sh --nj 8 --cmd "$decode_cmd" \ exp/tri4c_reseg${affix}/graph_nosp_tgpr data/test_eval92 \ exp/tri4c_reseg${affix}/decode_nosp_tgpr_eval92 || exit 1; ) & ############################################################################### # cleaned_a : Cleanup the segmented data directory using tri3b model. ############################################################################### steps/cleanup/clean_and_segment_data.sh --cmd "$train_cmd" \ --nj 80 \ data/train_si284_reseg${affix} data/lang_nosp \ exp/tri3b_ali_si284_reseg${affix} exp/tri3b_work_si284_reseg${affix} data/train_si284_reseg${affix}_cleaned_a ############################################################################### # Train new model on the cleaned_a data directory ############################################################################### # Align tri3b system with cleaned data steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_si284_reseg${affix}_cleaned_a data/lang_nosp exp/tri3b \ exp/tri3b_ali_si284_reseg${affix}_cleaned_a # Train SAT system on cleaned data steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_si284_reseg${affix}_cleaned_a data/lang_nosp \ exp/tri3b_ali_si284_reseg${affix}_cleaned_a exp/tri4d${affix}_cleaned_a ( utils/mkgraph.sh data/lang_nosp_test_tgpr \ exp/tri4d${affix}_cleaned_a exp/tri4d${affix}_cleaned_a/graph_nosp_tgpr || exit 1; steps/decode_fmllr.sh --nj 10 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_a/graph_nosp_tgpr data/test_dev93 \ exp/tri4d${affix}_cleaned_a/decode_nosp_tgpr_dev93 || exit 1; steps/decode_fmllr.sh --nj 8 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_a/graph_nosp_tgpr data/test_eval92 \ exp/tri4d${affix}_cleaned_a/decode_nosp_tgpr_eval92 || exit 1; ) & ############################################################################### # cleaned_b : Cleanup the segmented data directory using the tri3c_reseg # model, which is a like a first-pass model trained on the resegmented data. ############################################################################### steps/cleanup/clean_and_segment_data.sh --cmd "$train_cmd" \ --nj 80 \ data/train_si284_reseg${affix} data/lang_nosp \ exp/tri3c_reseg${affix} exp/tri3c_reseg${affix}_work_si284_reseg${affix} \ data/train_si284_reseg${affix}_cleaned_b ############################################################################### # Train new model on the cleaned_b data directory ############################################################################### # Align tri3c_reseg system with cleaned data steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_si284_reseg${affix}_cleaned_b data/lang_nosp exp/tri3c_reseg${affix} \ exp/tri3c_reseg${affix}_ali_si284_reseg${affix}_cleaned_b # Train SAT system on cleaned data steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_si284_reseg${affix}_cleaned_b data/lang_nosp \ exp/tri3c_reseg${affix}_ali_si284_reseg${affix}_cleaned_b exp/tri4d${affix}_cleaned_b ( utils/mkgraph.sh data/lang_nosp_test_tgpr \ exp/tri4d${affix}_cleaned_b exp/tri4d${affix}_cleaned_b/graph_nosp_tgpr || exit 1; steps/decode_fmllr.sh --nj 10 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_b/graph_nosp_tgpr data/test_dev93 \ exp/tri4d${affix}_cleaned_b/decode_nosp_tgpr_dev93 || exit 1; steps/decode_fmllr.sh --nj 8 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_b/graph_nosp_tgpr data/test_eval92 \ exp/tri4d${affix}_cleaned_b/decode_nosp_tgpr_eval92 || exit 1; ) & ############################################################################### # cleaned_c : Cleanup the segmented data directory using the tri4c_reseg # model, which is a like a first-pass model trained on the resegmented data. ############################################################################### steps/cleanup/clean_and_segment_data.sh --cmd "$train_cmd" \ --nj 80 \ data/train_si284_reseg${affix} data/lang_nosp \ exp/tri4c_reseg${affix} exp/tri4c_reseg${affix}_work_si284_reseg${affix} \ data/train_si284_reseg${affix}_cleaned_c ############################################################################### # Train new model on the cleaned_c data directory ############################################################################### # Align tri4c_reseg system with cleaned data steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \ data/train_si284_reseg${affix}_cleaned_c data/lang_nosp exp/tri4c_reseg${affix} \ exp/tri4c_reseg${affix}_ali_si284_reseg${affix}_cleaned_c # Train SAT system on cleaned data steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \ data/train_si284_reseg${affix}_cleaned_c data/lang_nosp \ exp/tri4c_reseg${affix}_ali_si284_reseg${affix}_cleaned_c exp/tri4d${affix}_cleaned_c ( utils/mkgraph.sh data/lang_nosp_test_tgpr \ exp/tri4d${affix}_cleaned_c exp/tri4d${affix}_cleaned_c/graph_nosp_tgpr || exit 1; steps/decode_fmllr.sh --nj 10 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_c/graph_nosp_tgpr data/test_dev93 \ exp/tri4d${affix}_cleaned_c/decode_nosp_tgpr_dev93 || exit 1; steps/decode_fmllr.sh --nj 8 --cmd "$decode_cmd" \ exp/tri4d${affix}_cleaned_c/graph_nosp_tgpr data/test_eval92 \ exp/tri4d${affix}_cleaned_c/decode_nosp_tgpr_eval92 || exit 1; ) & |