Blame view
egs/wsj/s5/steps/cleanup/clean_and_segment_data.sh
8.76 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
#!/bin/bash # Copyright 2016 Vimal Manohar # 2016 Johns Hopkins University (author: Daniel Povey) # Apache 2.0 # This script demonstrates how to re-segment training data selecting only the # "good" audio that matches the transcripts. # The basic idea is to decode with an existing in-domain GMM acoustic model, and # a biased language model built from the reference transcript, and then work out # the segmentation from a ctm like file. set -e -o pipefail stage=0 cmd=run.pl cleanup=true nj=4 graph_opts= segmentation_opts= . ./path.sh . utils/parse_options.sh if [ $# -ne 5 ]; then echo "Usage: $0 [options] <data> <lang> <srcdir> <dir> <cleaned-data>" echo " This script does data cleanup to remove bad portions of transcripts and" echo " may do other minor modifications of transcripts such as allowing repetitions" echo " for disfluencies, and adding or removing non-scored words (by default:" echo " words that map to 'silence phones')" echo " Note: <srcdir> is expected to contain a GMM-based model, preferably a" echo " SAT-trained one (see train_sat.sh)." echo " If <srcdir> contains fMLLR transforms (trans.*) they are assumed to" echo " be transforms corresponding to the data in <data>. If <srcdir> is for different" echo " dataset, and you're using SAT models, you should align <data> with <srcdir>" echo " using align_fmllr.sh, and supply that directory as <srcdir>" echo "" echo "e.g. $0 data/train data/lang exp/tri3 exp/tri3_cleanup data/train_cleaned" echo "Options:" echo " --stage <n> # stage to run from, to enable resuming from partially" echo " # completed run (default: 0)" echo " --cmd '$cmd' # command to submit jobs with (e.g. run.pl, queue.pl)" echo " --nj <n> # number of parallel jobs to use in graph creation and" echo " # decoding" echo " --segmentation-opts 'opts' # Additional options to segment_ctm_edits.py." echo " # Please run steps/cleanup/internal/segment_ctm_edits.py" echo " # without arguments to see allowed options." echo " --graph-opts 'opts' # Additional options to make_biased_lm_graphs.sh." echo " # Please run steps/cleanup/make_biased_lm_graphs.sh" echo " # without arguments to see allowed options." echo " --cleanup <true|false> # Clean up intermediate files afterward. Default true." exit 1 fi data=$1 lang=$2 srcdir=$3 dir=$4 data_out=$5 for f in $srcdir/{final.mdl,tree,cmvn_opts} $data/utt2spk $data/feats.scp $lang/words.txt $lang/oov.txt; do if [ ! -f $f ]; then echo "$0: expected file $f to exist." exit 1 fi done mkdir -p $dir cp $srcdir/final.mdl $dir cp $srcdir/tree $dir cp $srcdir/cmvn_opts $dir cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt cp $lang/phones.txt $dir if [ $stage -le 1 ]; then echo "$0: Building biased-language-model decoding graphs..." steps/cleanup/make_biased_lm_graphs.sh $graph_opts \ --nj $nj --cmd "$cmd" \ $data $lang $dir $dir/graphs fi if [ $stage -le 2 ]; then echo "$0: Decoding with biased language models..." transform_opt= if [ -f $srcdir/trans.1 ]; then # If srcdir contained trans.* then we assume they are fMLLR transforms for # this data, and we use them. transform_opt="--transform-dir $srcdir" fi # Note: the --beam 15.0 (vs. the default 13.0) does actually slow it # down substantially, around 0.35xRT to 0.7xRT on tedlium. # I want to test at some point whether it's actually necessary to have # this largish beam. steps/cleanup/decode_segmentation.sh \ --beam 15.0 --nj $nj --cmd "$cmd --mem 4G" $transform_opt \ --skip-scoring true --allow-partial false \ $dir/graphs $data $dir/lats # the following is for diagnostics, e.g. it will give us the lattice depth. steps/diagnostic/analyze_lats.sh --cmd "$cmd" $lang $dir/lats fi if [ $stage -le 3 ]; then echo "$0: Doing oracle alignment of lattices..." steps/cleanup/lattice_oracle_align.sh \ --cmd "$cmd" $data $lang $dir/lats $dir/lattice_oracle fi if [ $stage -le 4 ]; then echo "$0: using default values of non-scored words..." # At the level of this script we just hard-code it that non-scored words are # those that map to silence phones (which is what get_non_scored_words.py # gives us), although this could easily be made user-configurable. This list # of non-scored words affects the behavior of several of the data-cleanup # scripts; essentially, we view the non-scored words as negotiable when it # comes to the reference transcript, so we'll consider changing the reference # to match the hyp when it comes to these words. steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt fi if [ $stage -le 5 ]; then echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and " echo " ... to fix reference mismatches involving non-scored words. " $cmd $dir/log/modify_ctm_edits.log \ steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \ $dir/lattice_oracle/ctm_edits $dir/ctm_edits.modified echo " ... See $dir/log/modify_ctm_edits.log for details and stats, including" echo " a list of commonly-repeated words." fi if [ $stage -le 6 ]; then echo "$0: applying 'taint' markers to ctm-edits file to mark silences and" echo " ... non-scored words that are next to errors." $cmd $dir/log/taint_ctm_edits.log \ steps/cleanup/internal/taint_ctm_edits.py $dir/ctm_edits.modified $dir/ctm_edits.tainted echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log." fi if [ $stage -le 7 ]; then echo "$0: creating segmentation from ctm-edits file." $cmd $dir/log/segment_ctm_edits.log \ steps/cleanup/internal/segment_ctm_edits.py \ $segmentation_opts \ --oov-symbol-file=$lang/oov.txt \ --ctm-edits-out=$dir/ctm_edits.segmented \ --word-stats-out=$dir/word_stats.txt \ $dir/non_scored_words.txt \ $dir/ctm_edits.tainted $dir/text $dir/segments echo "$0: contents of $dir/log/segment_ctm_edits.log are:" cat $dir/log/segment_ctm_edits.log echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top," echo "see $dir/word_stats.txt" echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented" fi if [ $stage -le 8 ]; then echo "$0: working out required segment padding to account for feature-generation edge effects." # make sure $data/utt2dur exists. utils/data/get_utt2dur.sh $data # utt2dur.from_ctm contains lines of the form 'utt dur', e.g. # AMI_EN2001a_H00_MEE068_0000557_0000594 0.35 # where the times are ultimately derived from the num-frames in the features. cat $dir/lattice_oracle/ctm_edits | \ awk '{utt=$1; t=$3+$4; if (t > dur[$1]) dur[$1] = t; } END{for (k in dur) print k, dur[k];}' | \ sort > $dir/utt2dur.from_ctm # the apply_map command below gives us lines of the form 'utt dur-from-$data/utt2dur dur-from-utt2dur.from_ctm', # e.g. AMI_EN2001a_H00_MEE068_0000557_0000594 0.37 0.35 utils/apply_map.pl -f 1 <(awk '{print $1,$1,$2}' <$data/utt2dur) <$dir/utt2dur.from_ctm | \ awk '{printf("%.3f ", $2 - $3); }' | sort | uniq -c | sort -nr > $dir/padding_frequencies # there are values other than the most-frequent one (0.02) in there because # of wav files that were shorter than the segment info. padding=$(head -n 1 $dir/padding_frequencies | awk '{print $2}') echo "$0: we'll pad segments with $padding seconds at segment ends to correct for feature-generation end effects" echo $padding >$dir/segment_end_padding fi if [ $stage -le 8 ]; then echo "$0: based on the segments and text file in $dir/segments and $dir/text, creating new data-dir in $data_out" padding=$(cat $dir/segment_end_padding) # e.g. 0.02 utils/data/subsegment_data_dir.sh --segment-end-padding $padding ${data} $dir/segments $dir/text $data_out # utils/data/subsegment_data_dir.sh can output directories that have e.g. to many entries left in wav.scp # Clean this up with the fix_dat_dir.sh script utils/fix_data_dir.sh $data_out fi if [ $stage -le 9 ]; then echo "$0: recomputing CMVN stats for the new data" # Caution: this script puts the CMVN stats in $data_out/data, # e.g. data/train_cleaned/data. This is not the general pattern we use. steps/compute_cmvn_stats.sh $data_out $data_out/log $data_out/data fi if $cleanup; then echo "$0: cleaning up intermediate files" rm -r $dir/graphs/fsts $dir/graphs/HCLG.fsts.scp || true rm -r $dir/lats/lat.*.gz $dir/lats/split_fsts || true rm $dir/lattice_oracle/lat.*.gz || true fi echo "$0: done." |