Blame view

egs/wsj/s5/steps/cleanup/clean_and_segment_data.sh 8.76 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
  #!/bin/bash
  
  # Copyright 2016  Vimal Manohar
  #           2016  Johns Hopkins University (author: Daniel Povey)
  # Apache 2.0
  
  # This script demonstrates how to re-segment training data selecting only the
  # "good" audio that matches the transcripts.
  # The basic idea is to decode with an existing in-domain GMM acoustic model, and
  # a biased language model built from the reference transcript, and then work out
  # the segmentation from a ctm like file.
  
  set -e -o pipefail
  
  stage=0
  
  cmd=run.pl
  cleanup=true
  nj=4
  graph_opts=
  segmentation_opts=
  
  . ./path.sh
  . utils/parse_options.sh
  
  
  if [ $# -ne 5 ]; then
    echo "Usage: $0 [options] <data> <lang> <srcdir> <dir> <cleaned-data>"
    echo " This script does data cleanup to remove bad portions of transcripts and"
    echo " may do other minor modifications of transcripts such as allowing repetitions"
    echo " for disfluencies, and adding or removing non-scored words (by default:"
    echo " words that map to 'silence phones')"
    echo " Note: <srcdir> is expected to contain a GMM-based model, preferably a"
    echo " SAT-trained one (see train_sat.sh)."
    echo " If <srcdir> contains fMLLR transforms (trans.*) they are assumed to"
    echo " be transforms corresponding to the data in <data>.  If <srcdir> is for different"
    echo " dataset, and you're using SAT models, you should align <data> with <srcdir>"
    echo " using align_fmllr.sh, and supply that directory as <srcdir>"
    echo ""
    echo "e.g. $0 data/train data/lang exp/tri3 exp/tri3_cleanup data/train_cleaned"
    echo "Options:"
    echo "  --stage <n>             # stage to run from, to enable resuming from partially"
    echo "                          # completed run (default: 0)"
    echo "  --cmd '$cmd'            # command to submit jobs with (e.g. run.pl, queue.pl)"
    echo "  --nj <n>                # number of parallel jobs to use in graph creation and"
    echo "                          # decoding"
    echo "  --segmentation-opts 'opts'  # Additional options to segment_ctm_edits.py."
    echo "                              # Please run steps/cleanup/internal/segment_ctm_edits.py"
    echo "                              # without arguments to see allowed options."
    echo "  --graph-opts 'opts'         # Additional options to make_biased_lm_graphs.sh."
    echo "                              # Please run steps/cleanup/make_biased_lm_graphs.sh"
    echo "                              # without arguments to see allowed options."
    echo "  --cleanup        <true|false>  # Clean up intermediate files afterward.  Default true."
    exit 1
  
  fi
  
  data=$1
  lang=$2
  srcdir=$3
  dir=$4
  data_out=$5
  
  
  for f in $srcdir/{final.mdl,tree,cmvn_opts} $data/utt2spk $data/feats.scp $lang/words.txt $lang/oov.txt; do
    if [ ! -f $f ]; then
      echo "$0: expected file $f to exist."
      exit 1
    fi
  done
  
  mkdir -p $dir
  cp $srcdir/final.mdl $dir
  cp $srcdir/tree $dir
  cp $srcdir/cmvn_opts $dir
  cp $srcdir/{splice_opts,delta_opts,final.mat,final.alimdl} $dir 2>/dev/null || true
  
  utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt
  cp $lang/phones.txt $dir
  
  if [ $stage -le 1 ]; then
    echo "$0: Building biased-language-model decoding graphs..."
    steps/cleanup/make_biased_lm_graphs.sh $graph_opts \
      --nj $nj --cmd "$cmd" \
       $data $lang $dir $dir/graphs
  fi
  
  if [ $stage -le 2 ]; then
    echo "$0: Decoding with biased language models..."
    transform_opt=
    if [ -f $srcdir/trans.1 ]; then
      # If srcdir contained trans.* then we assume they are fMLLR transforms for
      # this data, and we use them.
      transform_opt="--transform-dir $srcdir"
    fi
    # Note: the --beam 15.0 (vs. the default 13.0) does actually slow it
    # down substantially, around 0.35xRT to 0.7xRT on tedlium.
    # I want to test at some point whether it's actually necessary to have
    # this largish beam.
    steps/cleanup/decode_segmentation.sh \
        --beam 15.0 --nj $nj --cmd "$cmd --mem 4G" $transform_opt \
        --skip-scoring true --allow-partial false \
         $dir/graphs $data $dir/lats
  
    # the following is for diagnostics, e.g. it will give us the lattice depth.
    steps/diagnostic/analyze_lats.sh --cmd "$cmd" $lang $dir/lats
  fi
  
  if [ $stage -le 3 ]; then
    echo "$0: Doing oracle alignment of lattices..."
    steps/cleanup/lattice_oracle_align.sh \
      --cmd "$cmd" $data $lang $dir/lats $dir/lattice_oracle
  fi
  
  
  if [ $stage -le 4 ]; then
    echo "$0: using default values of non-scored words..."
  
    # At the level of this script we just hard-code it that non-scored words are
    # those that map to silence phones (which is what get_non_scored_words.py
    # gives us), although this could easily be made user-configurable.  This list
    # of non-scored words affects the behavior of several of the data-cleanup
    # scripts; essentially, we view the non-scored words as negotiable when it
    # comes to the reference transcript, so we'll consider changing the reference
    # to match the hyp when it comes to these words.
    steps/cleanup/internal/get_non_scored_words.py $lang > $dir/non_scored_words.txt
  fi
  
  if [ $stage -le 5 ]; then
    echo "$0: modifying ctm-edits file to allow repetitions [for dysfluencies] and "
    echo "   ... to fix reference mismatches involving non-scored words. "
  
    $cmd $dir/log/modify_ctm_edits.log \
      steps/cleanup/internal/modify_ctm_edits.py --verbose=3 $dir/non_scored_words.txt \
      $dir/lattice_oracle/ctm_edits $dir/ctm_edits.modified
  
    echo "   ... See $dir/log/modify_ctm_edits.log for details and stats, including"
    echo " a list of commonly-repeated words."
  fi
  
  if [ $stage -le 6 ]; then
    echo "$0: applying 'taint' markers to ctm-edits file to mark silences and"
    echo "  ... non-scored words that are next to errors."
    $cmd $dir/log/taint_ctm_edits.log \
         steps/cleanup/internal/taint_ctm_edits.py $dir/ctm_edits.modified $dir/ctm_edits.tainted
    echo "... Stats, including global cor/ins/del/sub stats, are in $dir/log/taint_ctm_edits.log."
  fi
  
  
  if [ $stage -le 7 ]; then
    echo "$0: creating segmentation from ctm-edits file."
  
    $cmd $dir/log/segment_ctm_edits.log \
      steps/cleanup/internal/segment_ctm_edits.py \
         $segmentation_opts \
         --oov-symbol-file=$lang/oov.txt \
        --ctm-edits-out=$dir/ctm_edits.segmented \
        --word-stats-out=$dir/word_stats.txt \
        $dir/non_scored_words.txt \
        $dir/ctm_edits.tainted $dir/text $dir/segments
  
    echo "$0: contents of $dir/log/segment_ctm_edits.log are:"
    cat $dir/log/segment_ctm_edits.log
    echo "For word-level statistics on p(not-being-in-a-segment), with 'worst' words at the top,"
    echo "see $dir/word_stats.txt"
    echo "For detailed utterance-level debugging information, see $dir/ctm_edits.segmented"
  fi
  
  if [ $stage -le 8 ]; then
    echo "$0: working out required segment padding to account for feature-generation edge effects."
    # make sure $data/utt2dur exists.
    utils/data/get_utt2dur.sh $data
    # utt2dur.from_ctm contains lines of the form 'utt dur',  e.g.
    # AMI_EN2001a_H00_MEE068_0000557_0000594 0.35
    # where the times are ultimately derived from the num-frames in the features.
    cat $dir/lattice_oracle/ctm_edits | \
       awk '{utt=$1; t=$3+$4; if (t > dur[$1]) dur[$1] = t; } END{for (k in dur) print k, dur[k];}' | \
       sort > $dir/utt2dur.from_ctm
    # the apply_map command below gives us lines of the form 'utt dur-from-$data/utt2dur dur-from-utt2dur.from_ctm',
    # e.g. AMI_EN2001a_H00_MEE068_0000557_0000594 0.37 0.35
    utils/apply_map.pl -f 1 <(awk '{print $1,$1,$2}' <$data/utt2dur) <$dir/utt2dur.from_ctm  | \
      awk '{printf("%.3f
  ", $2 - $3); }' | sort | uniq -c | sort -nr > $dir/padding_frequencies
    # there are values other than the most-frequent one (0.02) in there because
    # of wav files that were shorter than the segment info.
    padding=$(head -n 1 $dir/padding_frequencies | awk '{print $2}')
    echo "$0: we'll pad segments with $padding seconds at segment ends to correct for feature-generation end effects"
    echo $padding >$dir/segment_end_padding
  fi
  
  
  if [ $stage -le 8 ]; then
    echo "$0: based on the segments and text file in $dir/segments and $dir/text, creating new data-dir in $data_out"
    padding=$(cat $dir/segment_end_padding)  # e.g. 0.02
    utils/data/subsegment_data_dir.sh --segment-end-padding $padding ${data} $dir/segments $dir/text $data_out
    # utils/data/subsegment_data_dir.sh can output directories that have e.g. to many entries left in wav.scp
    # Clean this up with the fix_dat_dir.sh script
    utils/fix_data_dir.sh $data_out
  fi
  
  if [ $stage -le 9 ]; then
    echo "$0: recomputing CMVN stats for the new data"
    # Caution: this script puts the CMVN stats in $data_out/data,
    # e.g. data/train_cleaned/data.  This is not the general pattern we use.
    steps/compute_cmvn_stats.sh $data_out $data_out/log $data_out/data
  fi
  
  if $cleanup; then
    echo "$0: cleaning up intermediate files"
    rm -r $dir/graphs/fsts $dir/graphs/HCLG.fsts.scp || true
    rm -r $dir/lats/lat.*.gz $dir/lats/split_fsts || true
    rm $dir/lattice_oracle/lat.*.gz || true
  fi
  
  echo "$0: done."