Blame view
egs/wsj/s5/steps/cleanup/decode_fmllr_segmentation.sh
11.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#!/bin/bash # Copyright 2014 Guoguo Chen, 2015 GoVivace Inc. (Nagendra Goel) # 2017 Vimal Manohar # Apache 2.0 # Similar to steps/cleanup/decode_segmentation.sh, but does fMLLR adaptation. # Decoding script with per-utterance graph that does fMLLR adaptation. # This can be on top of delta+delta-delta, or LDA+MLLT features. # There are 3 models involved potentially in this script, # and for a standard, speaker-independent system they will all be the same. # The "alignment model" is for the 1st-pass decoding and to get the # Gaussian-level alignments for the "adaptation model" the first time we # do fMLLR. The "adaptation model" is used to estimate fMLLR transforms # and to generate state-level lattices. The lattices are then rescored # with the "final model". # The following table explains where we get these 3 models from. # Note: $srcdir is one level up from the decoding directory. # # Model Default source: # # "alignment model" $srcdir/final.alimdl --alignment-model <model> # (or $srcdir/final.mdl if alimdl absent) # "adaptation model" $srcdir/final.mdl --adapt-model <model> # "final model" $srcdir/final.mdl --final-model <model> set -e set -o pipefail # Begin configuration section first_beam=10.0 # Beam used in initial, speaker-indep. pass first_max_active=2000 # max-active used in initial pass. alignment_model= adapt_model= final_model= stage=0 acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in # lattice generation. max_active=7000 beam=13.0 lattice_beam=6.0 nj=4 silence_weight=0.01 cmd=run.pl si_dir= fmllr_update_type=full num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # ignored now. skip_scoring=false scoring_opts= max_fmllr_jobs=25 # I've seen the fMLLR jobs overload NFS badly if the decoding # was started with a lot of many jobs, so we limit the number of # parallel jobs to 25 by default. End configuration section allow_partial=true # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "$0: This is a special decoding script for segmentation where we" echo "use one decoding graph per segment. We assume a file HCLG.fsts.scp exists" echo "which is the scp file of the graphs for each segment." echo "This will normally be obtained by steps/cleanup/make_biased_lm_graphs.sh." echo "" echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>" echo " e.g.: $0 exp/tri2b/graph_train_si284_split \\" echo " data/train_si284_split exp/tri2b/decode_train_si284_split" echo "" echo "where <decode-dir> is assumed to be a sub-directory of the directory" echo "where the model is." echo "" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --adapt-model <adapt-mdl> # Model to compute transforms with" echo " --alignment-model <ali-mdl> # Model to get Gaussian-level alignments for" echo " # 1st pass of transform computation." echo " --final-model <finald-mdl> # Model to finally decode with" echo " --si-dir <speaker-indep-decoding-dir> # use this to skip 1st pass of decoding" echo " # Caution-- must be with same tree" echo " --acwt <acoustic-weight> # default 0.08333 ... used to get posteriors" echo " --num-threads <n> # number of threads to use, default 1." echo " --scoring-opts <opts> # options to local/score.sh" exit 1; fi graphdir=$1 data=$2 dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash. srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. sdata=$data/split$nj; thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs splice_opts=`cat $srcdir/splice_opts 2>/dev/null` || true # frame-splicing options. cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null` delta_opts=`cat $srcdir/delta_opts 2>/dev/null` || true silphonelist=`cat $graphdir/phones/silence.csl` || exit 1; utils/lang/check_phones_compatible.sh $graphdir/phones.txt $srcdir/phones.txt # Some checks. Note: we don't need $srcdir/tree but we expect # it should exist, given the current structure of the scripts. for f in $graphdir/HCLG.fsts.scp $data/feats.scp $srcdir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Split HCLG.fsts.scp by input utterance n1=$(cat $graphdir/HCLG.fsts.scp | wc -l) n2=$(cat $data/feats.scp | wc -l) if [ $n1 != $n2 ]; then echo "$0: expected $n2 graphs in $graphdir/HCLG.fsts.scp, got $n1" fi mkdir -p $dir/split_fsts sort -k1,1 $graphdir/HCLG.fsts.scp > $dir/HCLG.fsts.sorted.scp utils/filter_scps.pl --no-warn -f 1 JOB=1:$nj \ $sdata/JOB/feats.scp $dir/HCLG.fsts.sorted.scp $dir/split_fsts/HCLG.fsts.JOB.scp HCLG=scp:$dir/split_fsts/HCLG.fsts.JOB.scp ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; ## ## Do the speaker-independent decoding, if --si-dir option not present. ## if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass. si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si". if [ $stage -le 0 ]; then if [ -f "$graphdir/num_pdfs" ]; then [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $alignment_model | grep pdfs | awk '{print $NF}'` ] || \ { echo "Mismatch in number of pdfs with $alignment_model"; exit 1; } fi steps/cleanup/decode_segmentation.sh --scoring-opts "$scoring_opts" \ --num-threads $num_threads --skip-scoring $skip_scoring \ --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam \ --model $alignment_model --max-active \ $first_max_active $graphdir $data $si_dir || exit 1; fi fi ## ## Some checks, and setting of defaults for variables. [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1; [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1; [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl [ -z "$final_model" ] && final_model=$srcdir/final.mdl for f in $adapt_model $final_model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## ## Set up the unadapted features "$sifeats" if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type"; case $feat_type in delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";; lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |";; *) echo "Invalid feature type $feat_type" && exit 1; esac ## ## Now get the first-pass fMLLR transforms. if [ $stage -le 1 ]; then echo "$0: getting first-pass fMLLR transforms." $cmd --max-jobs-run $max_fmllr_jobs JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \ gunzip -c $si_dir/lat.JOB.gz \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $alignment_model ark:- ark:- \| \ gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \ gmm-est-fmllr-gpost --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$sifeats" ark,s,cs:- \ ark:$dir/pre_trans.JOB || exit 1; fi ## pass1feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/pre_trans.JOB ark:- ark:- |" ## Do the main lattice generation pass. Note: we don't determinize the lattices at ## this stage, as we're going to use them in acoustic rescoring with the larger ## model, and it's more correct to store the full state-level lattice for this purpose. if [ $stage -le 2 ]; then echo "$0: doing main lattice generation phase" if [ -f "$graphdir/num_pdfs" ]; then [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $adapt_model | grep pdfs | awk '{print $NF}'` ] || \ { echo "Mismatch in number of pdfs with $adapt_model"; exit 1; } fi $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \ gmm-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \ --acoustic-scale=$acwt --determinize-lattice=false \ --allow-partial=$allow_partial --word-symbol-table=$graphdir/words.txt \ $adapt_model "$HCLG" "$pass1feats" "ark:|gzip -c > $dir/lat.tmp.JOB.gz" fi ## ## Do a second pass of estimating the transform-- this time with the lattices ## generated from the alignment model. Compose the transforms to get ## $dir/trans.1, etc. if [ $stage -le 3 ]; then echo "$0: estimating fMLLR transforms a second time." $cmd --max-jobs-run $max_fmllr_jobs JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \ lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=4.0 \ "ark:gunzip -c $dir/lat.tmp.JOB.gz|" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass1feats" \ ark,s,cs:- ark:$dir/trans_tmp.JOB '&&' \ compose-transforms --b-is-affine=true ark:$dir/trans_tmp.JOB ark:$dir/pre_trans.JOB \ ark:$dir/trans.JOB || exit 1; fi ## feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |" # Rescore the state-level lattices with the final adapted features, and the final model # (which by default is $srcdir/final.mdl, but which may be specified on the command line, # useful in case of discriminatively trained systems). # At this point we prune and determinize the lattices and write them out, ready for # language model rescoring. if [ $stage -le 4 ]; then echo "$0: doing a final pass of acoustic rescoring." $cmd --num-threads $num_threads JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \ gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" '&&' rm $dir/lat.tmp.JOB.gz || exit 1; fi if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "$0: Not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh --cmd "$cmd" $scoring_opts $data $graphdir $dir || { echo "$0: Scoring failed. (ignore by '--skip-scoring true')"; exit 1; } fi rm $dir/{trans_tmp,pre_trans}.* exit 0; |