Blame view

egs/wsj/s5/steps/cleanup/decode_fmllr_segmentation.sh 11.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  #!/bin/bash
  
  # Copyright 2014  Guoguo Chen, 2015 GoVivace Inc. (Nagendra Goel)
  #           2017  Vimal Manohar
  # Apache 2.0
  
  # Similar to steps/cleanup/decode_segmentation.sh, but does fMLLR adaptation.
  # Decoding script with per-utterance graph that does fMLLR adaptation.
  # This can be on top of delta+delta-delta, or LDA+MLLT features.
  
  # There are 3 models involved potentially in this script,
  # and for a standard, speaker-independent system they will all be the same.
  # The "alignment model" is for the 1st-pass decoding and to get the
  # Gaussian-level alignments for the "adaptation model" the first time we
  # do fMLLR.  The "adaptation model" is used to estimate fMLLR transforms
  # and to generate state-level lattices.  The lattices are then rescored
  # with the "final model".
  
  # The following table explains where we get these 3 models from.
  # Note: $srcdir is one level up from the decoding directory.
  #
  #   Model              Default source:
  #
  #  "alignment model"   $srcdir/final.alimdl              --alignment-model <model>
  #                     (or $srcdir/final.mdl if alimdl absent)
  #  "adaptation model"  $srcdir/final.mdl                 --adapt-model <model>
  #  "final model"       $srcdir/final.mdl                 --final-model <model>
  
  set -e
  set -o pipefail
  
  # Begin configuration section
  first_beam=10.0 # Beam used in initial, speaker-indep. pass
  first_max_active=2000 # max-active used in initial pass.
  alignment_model=
  adapt_model=
  final_model=
  stage=0
  acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in
                # lattice generation.
  max_active=7000
  beam=13.0
  lattice_beam=6.0
  nj=4
  silence_weight=0.01
  cmd=run.pl
  si_dir=
  fmllr_update_type=full
  num_threads=1 # if >1, will use gmm-latgen-faster-parallel
  parallel_opts=  # ignored now.
  skip_scoring=false
  scoring_opts=
  max_fmllr_jobs=25  # I've seen the fMLLR jobs overload NFS badly if the decoding
                     # was started with a lot of many jobs, so we limit the number of
                     # parallel jobs to 25 by default.  End configuration section
  allow_partial=true
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f ./path.sh ] && . ./path.sh; # source the path.
  . parse_options.sh || exit 1;
  
  if [ $# != 3 ]; then
     echo "$0: This is a special decoding script for segmentation where we"
     echo "use one decoding graph per segment. We assume a file HCLG.fsts.scp exists"
     echo "which is the scp file of the graphs for each segment."
     echo "This will normally be obtained by steps/cleanup/make_biased_lm_graphs.sh."
     echo ""
     echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>"
     echo " e.g.: $0 exp/tri2b/graph_train_si284_split \\"
     echo "             data/train_si284_split exp/tri2b/decode_train_si284_split"
     echo ""
     echo "where <decode-dir> is assumed to be a sub-directory of the directory"
     echo "where the model is."
     echo ""
     echo "main options (for others, see top of script file)"
     echo "  --config <config-file>                   # config containing options"
     echo "  --nj <nj>                                # number of parallel jobs"
     echo "  --cmd <cmd>                              # Command to run in parallel with"
     echo "  --adapt-model <adapt-mdl>                # Model to compute transforms with"
     echo "  --alignment-model <ali-mdl>              # Model to get Gaussian-level alignments for"
     echo "                                           # 1st pass of transform computation."
     echo "  --final-model <finald-mdl>               # Model to finally decode with"
     echo "  --si-dir <speaker-indep-decoding-dir>    # use this to skip 1st pass of decoding"
     echo "                                           # Caution-- must be with same tree"
     echo "  --acwt <acoustic-weight>                 # default 0.08333 ... used to get posteriors"
     echo "  --num-threads <n>                        # number of threads to use, default 1."
     echo "  --scoring-opts <opts>                    # options to local/score.sh"
     exit 1;
  fi
  
  
  graphdir=$1
  data=$2
  dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash.
  
  srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
  sdata=$data/split$nj;
  
  thread_string=
  [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
  
  
  mkdir -p $dir/log
  split_data.sh $data $nj || exit 1;
  echo $nj > $dir/num_jobs
  splice_opts=`cat $srcdir/splice_opts 2>/dev/null` || true  # frame-splicing options.
  cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
  delta_opts=`cat $srcdir/delta_opts 2>/dev/null` || true
  
  silphonelist=`cat $graphdir/phones/silence.csl` || exit 1;
  
  utils/lang/check_phones_compatible.sh $graphdir/phones.txt $srcdir/phones.txt
  
  # Some checks.  Note: we don't need $srcdir/tree but we expect
  # it should exist, given the current structure of the scripts.
  for f in $graphdir/HCLG.fsts.scp $data/feats.scp $srcdir/tree; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  # Split HCLG.fsts.scp by input utterance
  n1=$(cat $graphdir/HCLG.fsts.scp | wc -l)
  n2=$(cat $data/feats.scp | wc -l)
  if [ $n1 != $n2 ]; then
    echo "$0: expected $n2 graphs in $graphdir/HCLG.fsts.scp, got $n1"
  fi
  
  mkdir -p $dir/split_fsts
  sort -k1,1 $graphdir/HCLG.fsts.scp > $dir/HCLG.fsts.sorted.scp
  utils/filter_scps.pl --no-warn -f 1 JOB=1:$nj \
    $sdata/JOB/feats.scp $dir/HCLG.fsts.sorted.scp $dir/split_fsts/HCLG.fsts.JOB.scp
  HCLG=scp:$dir/split_fsts/HCLG.fsts.JOB.scp
  
  
  ## Work out name of alignment model. ##
  if [ -z "$alignment_model" ]; then
    if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl;
    else alignment_model=$srcdir/final.mdl; fi
  fi
  [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1;
  ##
  
  ## Do the speaker-independent decoding, if --si-dir option not present. ##
  if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass.
    si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si".
    if [ $stage -le 0 ]; then
      if [ -f "$graphdir/num_pdfs" ]; then
        [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $alignment_model | grep pdfs | awk '{print $NF}'` ] || \
          { echo "Mismatch in number of pdfs with $alignment_model"; exit 1; }
      fi
      steps/cleanup/decode_segmentation.sh --scoring-opts "$scoring_opts" \
             --num-threads $num_threads --skip-scoring $skip_scoring \
             --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam \
             --model $alignment_model --max-active \
             $first_max_active $graphdir $data $si_dir || exit 1;
    fi
  fi
  ##
  
  ## Some checks, and setting of defaults for variables.
  [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1;
  [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1;
  [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl
  [ -z "$final_model" ] && final_model=$srcdir/final.mdl
  for f in $adapt_model $final_model; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  ##
  
  ## Set up the unadapted features "$sifeats"
  if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
  echo "$0: feature type is $feat_type";
  case $feat_type in
    delta) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas $delta_opts ark:- ark:- |";;
    lda) sifeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |";;
    *) echo "Invalid feature type $feat_type" && exit 1;
  esac
  ##
  
  ## Now get the first-pass fMLLR transforms.
  if [ $stage -le 1 ]; then
    echo "$0: getting first-pass fMLLR transforms."
    $cmd --max-jobs-run $max_fmllr_jobs JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \
      gunzip -c $si_dir/lat.JOB.gz \| \
      lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
      weight-silence-post $silence_weight $silphonelist $alignment_model ark:- ark:- \| \
      gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \
      gmm-est-fmllr-gpost --fmllr-update-type=$fmllr_update_type \
      --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$sifeats" ark,s,cs:- \
      ark:$dir/pre_trans.JOB || exit 1;
  fi
  ##
  
  pass1feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/pre_trans.JOB ark:- ark:- |"
  
  ## Do the main lattice generation pass.  Note: we don't determinize the lattices at
  ## this stage, as we're going to use them in acoustic rescoring with the larger
  ## model, and it's more correct to store the full state-level lattice for this purpose.
  if [ $stage -le 2 ]; then
    echo "$0: doing main lattice generation phase"
    if [ -f "$graphdir/num_pdfs" ]; then
      [ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $adapt_model | grep pdfs | awk '{print $NF}'` ] || \
        { echo "Mismatch in number of pdfs with $adapt_model"; exit 1; }
    fi
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \
      gmm-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \
      --acoustic-scale=$acwt --determinize-lattice=false \
      --allow-partial=$allow_partial --word-symbol-table=$graphdir/words.txt \
      $adapt_model "$HCLG" "$pass1feats" "ark:|gzip -c > $dir/lat.tmp.JOB.gz"
  fi
  ##
  
  ## Do a second pass of estimating the transform-- this time with the lattices
  ## generated from the alignment model.  Compose the transforms to get
  ## $dir/trans.1, etc.
  if [ $stage -le 3 ]; then
    echo "$0: estimating fMLLR transforms a second time."
    $cmd --max-jobs-run $max_fmllr_jobs JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \
      lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=4.0 \
      "ark:gunzip -c $dir/lat.tmp.JOB.gz|" ark:- \| \
      lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
      weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \
      gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \
      --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$pass1feats" \
      ark,s,cs:- ark:$dir/trans_tmp.JOB '&&' \
      compose-transforms --b-is-affine=true ark:$dir/trans_tmp.JOB ark:$dir/pre_trans.JOB \
      ark:$dir/trans.JOB  || exit 1;
  fi
  ##
  
  feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
  
  # Rescore the state-level lattices with the final adapted features, and the final model
  # (which by default is $srcdir/final.mdl, but which may be specified on the command line,
  # useful in case of discriminatively trained systems).
  # At this point we prune and determinize the lattices and write them out, ready for
  # language model rescoring.
  
  if [ $stage -le 4 ]; then
    echo "$0: doing a final pass of acoustic rescoring."
    $cmd --num-threads $num_threads JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \
      gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \
      lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \
      "ark:|gzip -c > $dir/lat.JOB.gz" '&&' rm $dir/lat.tmp.JOB.gz || exit 1;
  fi
  
  if ! $skip_scoring ; then
    [ ! -x local/score.sh ] && \
      echo "$0: Not scoring because local/score.sh does not exist or not executable." && exit 1;
    local/score.sh --cmd "$cmd" $scoring_opts $data $graphdir $dir ||
      { echo "$0: Scoring failed. (ignore by '--skip-scoring true')"; exit 1; }
  fi
  
  rm $dir/{trans_tmp,pre_trans}.*
  
  exit 0;