Blame view
egs/wsj/s5/steps/cleanup/internal/resolve_ctm_edits_overlaps.py
12.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
#! /usr/bin/env python # Copyright 2014 Johns Hopkins University (Authors: Daniel Povey) # 2014 Vijayaditya Peddinti # 2016 Vimal Manohar # Apache 2.0. """ Script to combine ctms edits with overlapping segments obtained from smith-waterman alignment. This script is similar to utils/ctm/resolve_ctm_edits.py, where the overlapping region is just split in two. The approach here is a little more advanced since we have access to the WER (w.r.t. the reference text). It finds the WER of the overlapped region in the two overlapping segments, and chooses the better one. """ from __future__ import print_function from __future__ import division import argparse import collections import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s [%(pathname)s:%(lineno)s - ' '%(funcName)s - %(levelname)s ] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) def get_args(): """gets command line arguments""" usage = """ Python script to resolve overlaps in ctms """ parser = argparse.ArgumentParser(usage) parser.add_argument('segments', type=argparse.FileType('r'), help='use segments to resolve overlaps') parser.add_argument('ctm_edits_in', type=argparse.FileType('r'), help='input_ctm_file') parser.add_argument('ctm_edits_out', type=argparse.FileType('w'), help='output_ctm_file') parser.add_argument('--verbose', type=int, default=0, help="Higher value for more verbose logging.") args = parser.parse_args() if args.verbose > 2: logger.setLevel(logging.DEBUG) handler.setLevel(logging.DEBUG) return args def read_segments(segments_file): """Read from segments and returns two dictionaries, {utterance-id: (recording_id, start_time, end_time)} {recording_id: list-of-utterances} """ segments = {} reco2utt = collections.defaultdict(list) num_lines = 0 for line in segments_file: num_lines += 1 parts = line.strip().split() assert len(parts) in [4, 5] segments[parts[0]] = (parts[1], float(parts[2]), float(parts[3])) reco2utt[parts[1]].append(parts[0]) logger.info("Read %d lines from segments file %s", num_lines, segments_file.name) segments_file.close() return segments, reco2utt def read_ctm_edits(ctm_edits_file, segments): """Read CTM from ctm_edits_file into a dictionary of values indexed by the recording. It is assumed to be sorted by the recording-id and utterance-id. Returns a dictionary {recording : ctm_edit_lines} where ctm_lines is a list of lines of CTM corresponding to the utterances in the recording. The format is as follows: [[(utteranceA, channelA, start_time1, duration1, hyp_word1, conf1, ref_word1, edit_type1), (utteranceA, channelA, start_time2, duration2, hyp_word2, conf2, ref_word2, edit_type2), ... (utteranceA, channelA, start_timeN, durationN, hyp_wordN, confN, ref_wordN, edit_typeN)], [(utteranceB, channelB, start_time1, duration1, hyp_word1, conf1, ref_word1, edit_type1), (utteranceB, channelB, start_time2, duration2, hyp_word2, conf2, ref_word2, edit_type2), ...], ... [... (utteranceZ, channelZ, start_timeN, durationN, hyp_wordN, confN, ref_wordN, edit_typeN)] ] Arguments: segments - Dictionary containing the output of read_segments() { utterance_id: (recording_id, start_time, end_time) } """ ctm_edits = {} num_lines = 0 for line in ctm_edits_file: num_lines += 1 parts = line.split() utt = parts[0] reco = segments[utt][0] if (reco, utt) not in ctm_edits: ctm_edits[(reco, utt)] = [] ctm_edits[(reco, utt)].append( [parts[0], parts[1], float(parts[2]), float(parts[3]), parts[4], float(parts[5])] + parts[6:]) logger.info("Read %d lines from CTM %s", num_lines, ctm_edits_file.name) ctm_edits_file.close() return ctm_edits def wer(ctm_edit_lines): num_words = 0 num_incorrect_words = 0 for line in ctm_edit_lines: if line[7] != 'sil': num_words += 1 if line[7] in ['ins', 'del', 'sub']: num_incorrect_words += 1 if num_words == 0 and num_incorrect_words > 0: return float('inf') if num_words == 0 and num_incorrect_words == 0: return 0 return float(num_incorrect_words) / num_words def choose_best_ctm_lines(first_lines, second_lines, window_length, overlap_length): """Returns ctm lines that have lower WER. If the WER is the lines with the higher number of words is returned. """ i, best_lines = min((0, first_lines), (1, second_lines), key=lambda x: wer(x[1])) return i def resolve_overlaps(ctm_edits, segments): """Resolve overlaps within segments of the same recording. Returns new lines of CTM for the recording. Arguments: ctm_edits - The CTM lines for a single recording. This is one value stored in the dictionary read by read_ctm(). Assumes that the lines are sorted by the utterance-ids. The format is the following: [[(utteranceA, channelA, start_time1, duration1, hyp_word1, conf1), (utteranceA, channelA, start_time2, duration2, hyp_word2, conf2), ... (utteranceA, channelA, start_timeN, durationN, hyp_wordN, confN) ], [(utteranceB, channelB, start_time1, duration1, hyp_word1, conf1), (utteranceB, channelB, start_time2, duration2, hyp_word2, conf2), ...], ... [... (utteranceZ, channelZ, start_timeN, durationN, hyp_wordN, confN)] ] Expects this to be non-empty. segments - Dictionary containing the output of read_segments() { utterance_id: (recording_id, start_time, end_time) } """ total_ctm_edits = [] assert len(ctm_edits) > 0 # First column of first line in CTM for first utterance next_utt = ctm_edits[0][0][0] for utt_index, ctm_edits_for_cur_utt in enumerate(ctm_edits): if utt_index == len(ctm_edits) - 1: break if len(ctm_edits_for_cur_utt) == 0: next_utt = ctm_edits[utt_index + 1][0][0] continue cur_utt = ctm_edits_for_cur_utt[0][0] if cur_utt != next_utt: logger.error( "Current utterance %s is not the same as the next " "utterance %s in previous iteration. " "CTM is not sorted by utterance-id?", cur_utt, next_utt) raise ValueError # Assumption here is that the segments are written in # consecutive order in time. ctm_edits_for_next_utt = ctm_edits[utt_index + 1] next_utt = ctm_edits_for_next_utt[0][0] if segments[next_utt][1] < segments[cur_utt][1]: logger.error( "Next utterance %s <= Current utterance %s. " "CTM edits is not sorted by utterance-id.", next_utt, cur_utt) raise ValueError try: # length of this utterance window_length = segments[cur_utt][2] - segments[cur_utt][1] # overlap of this segment with the next segment # i.e. current_utterance_end_time - next_utterance_start_time # Note: It is possible for this to be negative when there is # actually no overlap between consecutive segments. try: overlap = segments[cur_utt][2] - segments[next_utt][1] except KeyError: logger("Could not find utterance %s in segments", next_utt) raise # find the first word that is in the overlap # at the end of the cur utt try: cur_utt_end_index = next( (i for i, line in enumerate(ctm_edits_for_cur_utt) if line[2] + line[3] / 2.0 > window_length - overlap)) except StopIteration: cur_utt_end_index = len(ctm_edits_for_cur_utt) cur_utt_end_lines = ctm_edits_for_cur_utt[cur_utt_end_index:] # find the last word that is not in the overlap # at the beginning of the next utt try: next_utt_start_index = next( (i for i, line in enumerate(ctm_edits_for_next_utt) if line[2] + line[3] / 2.0 > overlap)) except StopIteration: next_utt_start_index = 0 next_utt_start_lines = ctm_edits_for_next_utt[: next_utt_start_index] choose_index = choose_best_ctm_lines( cur_utt_end_lines, next_utt_start_lines, window_length, overlap) # Ignore the hypotheses beyond this midpoint. They will be # considered as part of the next segment. if choose_index == 1: total_ctm_edits.extend( ctm_edits_for_cur_utt[:cur_utt_end_index]) else: total_ctm_edits.extend(ctm_edits_for_cur_utt) if choose_index == 0 and next_utt_start_index > 0: # Update the ctm_edits_for_next_utt to include only the lines # starting from index. ctm_edits[utt_index + 1] = ( ctm_edits_for_next_utt[next_utt_start_index:]) # else leave the ctm_edits as is. except: logger.error("Could not resolve overlaps between CTM edits for " "%s and %s", cur_utt, next_utt) logger.error("Current CTM:") for line in ctm_edits_for_cur_utt: logger.error(ctm_edit_line_to_string(line)) logger.error("Next CTM:") for line in ctm_edits_for_next_utt: logger.error(ctm_edit_line_to_string(line)) raise # merge the last ctm entirely total_ctm_edits.extend(ctm_edits[-1]) return total_ctm_edits def ctm_edit_line_to_string(line): """Converts a line of CTM edit to string.""" return "{0} {1} {2} {3} {4} {5} {6}".format(line[0], line[1], line[2], line[3], line[4], line[5], " ".join(line[6:])) def write_ctm_edits(ctm_edit_lines, out_file): """Writes CTM lines stored in a list to file.""" for line in ctm_edit_lines: print(ctm_edit_line_to_string(line), file=out_file) def run(args): """this method does everything in this script""" segments, reco2utt = read_segments(args.segments) ctm_edits = read_ctm_edits(args.ctm_edits_in, segments) for reco, utts in reco2utt.items(): ctm_edits_for_reco = [] for utt in sorted(utts, key=lambda x: segments[x][1]): if (reco, utt) in ctm_edits: ctm_edits_for_reco.append(ctm_edits[(reco, utt)]) try: if len(ctm_edits_for_reco) == 0: logger.warn('CTMs for recording %s is empty.', reco) continue # Go to the next recording # Process CTMs in the recordings ctm_edits_for_reco = resolve_overlaps(ctm_edits_for_reco, segments) write_ctm_edits(ctm_edits_for_reco, args.ctm_edits_out) except Exception: logger.error("Failed to process CTM edits for recording %s", reco) raise args.ctm_edits_out.close() logger.info("Wrote CTM for %d recordings.", len(ctm_edits)) def main(): """The main function which parses arguments and call run().""" args = get_args() try: run(args) except: logger.error("Failed to resolve overlaps", exc_info=True) raise RuntimeError finally: try: for f in [args.segments, args.ctm_edits_in, args.ctm_edits_out]: if f is not None: f.close() except IOError: logger.error("Could not close some files. " "Disk error or broken pipes?") raise except UnboundLocalError: raise SystemExit(1) if __name__ == "__main__": main() |