Blame view
egs/wsj/s5/steps/cleanup/internal/segment_ctm_edits_mild.py
92.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 |
#! /usr/bin/env python # Copyright 2016 Vimal Manohar # 2016 Johns Hopkins University (author: Daniel Povey) # Apache 2.0 from __future__ import print_function from __future__ import division import argparse import copy import logging import heapq import sys from collections import defaultdict """ This script reads 'ctm-edits' file format that is produced by align_ctm_ref.py and modified by modify_ctm_edits.py and taint_ctm_edits.py. Its function is to produce a segmentation and text from the ctm-edits input. It is a milder version of the script segment_ctm_edits.py i.e. it allows to keep more of the reference. This is useful for segmenting long-audio based on imperfect transcripts. The ctm-edits file format that this script expects is as follows <file-id> <channel> <start-time> <duration> <conf> <hyp-word> <ref-word> <edit> ['tainted'] [note: file-id is really utterance-id at this point]. """ _global_logger = logging.getLogger(__name__) _global_logger.setLevel(logging.INFO) _global_handler = logging.StreamHandler() _global_handler.setLevel(logging.INFO) _global_formatter = logging.Formatter( '%(asctime)s [%(pathname)s:%(lineno)s - ' '%(funcName)s - %(levelname)s ] %(message)s') _global_handler.setFormatter(_global_formatter) _global_logger.addHandler(_global_handler) _global_non_scored_words = {} def non_scored_words(): return _global_non_scored_words def get_args(): parser = argparse.ArgumentParser( description="""This program produces segmentation and text information based on reading ctm-edits input format which is produced by steps/cleanup/internal/get_ctm_edits.py, steps/cleanup/internal/modify_ctm_edits.py and steps/cleanup/internal/taint_ctm_edits.py.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--min-segment-length", type=float, default=0.5, help="""Minimum allowed segment length (in seconds) for any segment; shorter segments than this will be discarded.""") parser.add_argument("--min-new-segment-length", type=float, default=1.0, help="""Minimum allowed segment length (in seconds) for newly created segments (i.e. not identical to the input utterances). Expected to be >= --min-segment-length.""") parser.add_argument("--frame-length", type=float, default=0.01, help="""This only affects rounding of the output times; they will be constrained to multiples of this value.""") parser.add_argument("--max-tainted-length", type=float, default=0.05, help="""Maximum allowed length of any 'tainted' line. Note: 'tainted' lines may only appear at the boundary of a segment""") parser.add_argument("--max-edge-silence-length", type=float, default=0.5, help="""Maximum allowed length of silence if it appears at the edge of a segment (will be truncated). This rule is relaxed if such truncation would take a segment below the --min-segment-length or --min-new-segment-length.""") parser.add_argument("--max-edge-non-scored-length", type=float, default=0.5, help="""Maximum allowed length of a non-scored word (noise, cough, etc.) if it appears at the edge of a segment (will be truncated). This rule is relaxed if such truncation would take a segment below the --min-segment-length.""") parser.add_argument("--max-internal-silence-length", type=float, default=2.0, help="""Maximum allowed length of silence if it appears inside a segment (will cause the segment to be split).""") parser.add_argument("--max-internal-non-scored-length", type=float, default=2.0, help="""Maximum allowed length of a non-scored word (noise, etc.) if it appears inside a segment (will cause the segment to be split). Note: reference words which are real words but OOV are not included in this category.""") parser.add_argument("--unk-padding", type=float, default=0.05, help="""Amount of padding with <unk> that we do if a segment boundary is next to errors (ins, del, sub). That is, we add this amount of time to the segment and add the <unk> word to cover the acoustics. If nonzero, the --oov-symbol-file option must be supplied.""") parser.add_argument("--max-junk-proportion", type=float, default=0.1, help="""Maximum proportion of the time of the segment that may consist of potentially bad data, in which we include 'tainted' lines of the ctm-edits input and unk-padding.""") parser.add_argument("--min-split-point-duration", type=float, default=0.0, help="""Minimum duration of silence or non-scored word to be considered a viable split point when truncating based on junk proportion.""") parser.add_argument("--max-deleted-words-kept-when-merging", dest='max_deleted_words', type=int, default=1, help="""When merging segments that are found to be overlapping or adjacent after all other processing, keep in the transcript the reference words that were deleted between the segments [if any] as long as there were no more than this many reference words. Setting this to zero will mean that any reference words that were deleted between the segments we're about to reattach will not appear in the generated transcript (so we'll match the hyp).""") parser.add_argument("--splitting.min-silence-length", dest="min_silence_length_to_split", type=float, default=0.3, help="""Only considers silences that are at least this long as potential split points""") parser.add_argument("--splitting.min-non-scored-length", dest="min_non_scored_length_to_split", type=float, default=0.1, help="""Only considers non-scored words that are at least this long as potential split points""") parser.add_argument("--splitting.max-segment-length", dest="max_segment_length_for_splitting", type=float, default=10, help="""Try to split long segments into segments that are smaller that this size. See possibly_split_long_segments() in Segment class.""") parser.add_argument("--splitting.hard-max-segment-length", dest="hard_max_segment_length", type=float, default=15, help="""Split all segments that are longer than this uniformly into segments of size --splitting.max-segment-length""") parser.add_argument("--merging-score.silence-factor", dest="silence_factor", type=float, default=1, help="""Weightage on the silence length when merging segments""") parser.add_argument("--merging-score.incorrect-words-factor", dest="incorrect_words_factor", type=float, default=1, help="""Weightage on the incorrect_words_length when merging segments""") parser.add_argument("--merging-score.tainted-words-factor", dest="tainted_words_factor", type=float, default=1, help="""Weightage on the WER including the tainted words as incorrect words.""") parser.add_argument("--merging.max-wer", dest="max_wer", type=float, default=10.0, help="Max WER%% of merged segments when merging") parser.add_argument("--merging.max-bad-proportion", dest="max_bad_proportion", type=float, default=0.2, help="""Maximum length of silence, junk and incorrect words in a merged segment allowed as a fraction of the total length of merged segment.""") parser.add_argument("--merging.max-segment-length", dest='max_segment_length_for_merging', type=float, default=10, help="""Maximum segment length allowed for merged segment""") parser.add_argument("--merging.max-intersegment-incorrect-words-length", dest='max_intersegment_incorrect_words_length', type=float, default=0.2, help="""Maximum length of intersegment region that can be of incorrect word. This is to allow cases where there may be a lot of silence in the segment but the incorrect words are few, while preventing regions that have a lot of incorrect words.""") parser.add_argument("--oov-symbol-file", type=argparse.FileType('r'), help="""Filename of file such as data/lang/oov.txt which contains the text form of the OOV word, normally '<unk>'. Supplied as a file to avoid complications with escaping. Necessary if the --unk-padding option has a nonzero value (which it does by default.""") parser.add_argument("--ctm-edits-out", type=argparse.FileType('w'), help="""Filename to output an extended version of the ctm-edits format with segment start and end points noted. This file is intended to be read by humans; there are currently no scripts that will read it.""") parser.add_argument("--word-stats-out", type=argparse.FileType('w'), help="""Filename for output of word-level stats, of the form '<word> <bad-proportion> <total-count-in-ref>', e.g. 'hello 0.12 12408', where the <bad-proportion> is the proportion of the time that this reference word does not make it into a segment. It can help reveal words that have problematic pronunciations or are associated with transcription errors.""") parser.add_argument("non_scored_words_in", metavar="<non-scored-words-file>", type=argparse.FileType('r'), help="""Filename of file containing a list of non-scored words, one per line. See steps/cleanup/internal/get_nonscored_words.py.""") parser.add_argument("ctm_edits_in", metavar="<ctm-edits-in>", type=argparse.FileType('r'), help="""Filename of input ctm-edits file. Use /dev/stdin for standard input.""") parser.add_argument("text_out", metavar="<text-out>", type=argparse.FileType('w'), help="""Filename of output text file (same format as data/train/text, i.e. <new-utterance-id> <word1> <word2> ... <wordN>""") parser.add_argument("segments_out", metavar="<segments-out>", type=argparse.FileType('w'), help="""Filename of output segments. This has the same format as data/train/segments, but instead of <recording-id>, the second field is the old utterance-id, i.e <new-utterance-id> <old-utterance-id> <start-time> <end-time>""") parser.add_argument("--verbose", type=int, default=0, help="Use higher verbosity for more debugging output") args = parser.parse_args() if args.verbose > 2: _global_handler.setLevel(logging.DEBUG) _global_logger.setLevel(logging.DEBUG) return args def is_tainted(split_line_of_utt): """Returns True if this line in ctm-edit is "tainted.""" return len(split_line_of_utt) > 8 and split_line_of_utt[8] == 'tainted' def compute_segment_cores(split_lines_of_utt): """ This function returns a list of pairs (start-index, end-index) representing the cores of segments (so if a pair is (s, e), then the core of a segment would span (s, s+1, ... e-1). The argument 'split_lines_of_utt' is list of lines from a ctm-edits file corresponding to a single utterance. By the 'core of a segment', we mean a sequence of ctm-edits lines including at least one 'cor' line and a contiguous sequence of other lines of the type 'cor', 'fix' and 'sil' that must be not tainted. The segment core excludes any tainted lines at the edge of a segment, which will be added later. We only initiate segments when it contains something correct and not realized as unk (i.e. ref==hyp); and we extend it with anything that is 'sil' or 'fix' or 'cor' that is not tainted. Contiguous regions of 'true' in the resulting boolean array will then become the cores of prototype segments, and we'll add any adjacent tainted words (or parts of them). """ num_lines = len(split_lines_of_utt) line_is_in_segment_core = [False] * num_lines # include only the correct lines for i in range(num_lines): if (split_lines_of_utt[i][7] == 'cor' and split_lines_of_utt[i][4] == split_lines_of_utt[i][6]): line_is_in_segment_core[i] = True # extend each proto-segment forwards as far as we can: for i in range(1, num_lines): if line_is_in_segment_core[i - 1] and not line_is_in_segment_core[i]: edit_type = split_lines_of_utt[i][7] if (not is_tainted(split_lines_of_utt[i]) and (edit_type == 'cor' or edit_type == 'sil' or edit_type == 'fix')): line_is_in_segment_core[i] = True # extend each proto-segment backwards as far as we can: for i in reversed(range(0, num_lines - 1)): if line_is_in_segment_core[i + 1] and not line_is_in_segment_core[i]: edit_type = split_lines_of_utt[i][7] if (not is_tainted(split_lines_of_utt[i]) and (edit_type == 'cor' or edit_type == 'sil' or edit_type == 'fix')): line_is_in_segment_core[i] = True # Get contiguous regions of line in the form of a list # of (start_index, end_index) segment_ranges = [] cur_segment_start = None for i in range(0, num_lines): if line_is_in_segment_core[i]: if cur_segment_start is None: cur_segment_start = i else: if cur_segment_start is not None: segment_ranges.append((cur_segment_start, i)) cur_segment_start = None if cur_segment_start is not None: segment_ranges.append((cur_segment_start, num_lines)) return segment_ranges class SegmentStats(object): """Class to store various statistics of segments.""" def __init__(self): self.num_incorrect_words = 0 self.num_tainted_words = 0 self.incorrect_words_length = 0 self.tainted_nonsilence_length = 0 self.silence_length = 0 self.num_words = 0 self.total_length = 0 def wer(self): """Returns WER%""" try: return float(self.num_incorrect_words) * 100.0 / self.num_words except ZeroDivisionError: return float("inf") def bad_proportion(self): assert self.total_length > 0 proportion = float(self.silence_length + self.tainted_nonsilence_length + self.incorrect_words_length) / self.total_length if proportion > 1.00005: raise RuntimeError("Error in segment stats {0}".format(self)) return proportion def incorrect_proportion(self): assert self.total_length > 0 proportion = float(self.incorrect_words_length) / self.total_length if proportion > 1.00005: raise RuntimeError("Error in segment stats {0}".format(self)) return proportion def combine(self, other, scale=1): """Merges this stats with another stats object.""" self.num_incorrect_words += scale * other.num_incorrect_words self.num_tainted_words += scale * other.num_tainted_words self.num_words += scale * other.num_words self.incorrect_words_length += scale * other.incorrect_words_length self.tainted_nonsilence_length += (scale * other.tainted_nonsilence_length) self.silence_length += scale * other.silence_length self.total_length += scale * other.total_length def assert_equal(self, other): try: assert self.num_incorrect_words == other.num_incorrect_words assert self.num_tainted_words == other.num_tainted_words assert (abs(self.incorrect_words_length - other.incorrect_words_length) < 0.01) assert (abs(self.tainted_nonsilence_length - other.tainted_nonsilence_length) < 0.01) assert abs(self.silence_length - other.silence_length) < 0.01 assert self.num_words == other.num_words assert abs(self.total_length - other.total_length) < 0.01 except AssertionError: _global_logger.error("self %s != other %s", self, other) raise def compare(self, other): """Returns true if this stats is same as another stats object.""" if self.num_incorrect_words != other.num_incorrect_words: return False if self.num_tainted_words != other.num_tainted_words: return False if self.incorrect_words_length != other.incorrect_words_length: return False if self.tainted_nonsilence_length != other.tainted_nonsilence_length: return False if self.silence_length != other.silence_length: return False if self.num_words != other.num_words: return False if self.total_length != other.total_length: return False return True def __str__(self): return ("num-incorrect-words={num_incorrect:d}," "num-tainted-words={num_tainted:d}," "num-words={num_words:d}," "incorrect-length={incorrect_length:.2f}," "silence-length={sil_length:.2f}," "tainted-nonsilence-length={tainted_nonsilence_length:.2f}," "total-length={total_length:.2f}".format( num_incorrect=self.num_incorrect_words, num_tainted=self.num_tainted_words, num_words=self.num_words, incorrect_length=self.incorrect_words_length, sil_length=self.silence_length, tainted_nonsilence_length=self.tainted_nonsilence_length, total_length=self.total_length)) class Segment(object): """Class to store segments.""" def __init__(self, split_lines_of_utt, start_index, end_index, debug_str=None, compute_segment_stats=False, segment_stats=None): self.split_lines_of_utt = split_lines_of_utt # start_index is the index of the first line that appears in this # segment, and end_index is one past the last line. This does not # include unk-padding. self.start_index = start_index self.end_index = end_index assert end_index > start_index # If the following values are nonzero, then when we create the segment # we will add <unk> at the start and end of the segment [representing # partial words], with this amount of additional audio. self.start_unk_padding = 0.0 self.end_unk_padding = 0.0 # debug_str keeps track of the 'core' of the segment. if debug_str is None: debug_str = 'core-start={0},core-end={1}'.format(start_index, end_index) else: assert type(debug_str) == str self.debug_str = debug_str # This gives the proportion of the time of the first line in the # segment that we keep. Usually 1.0 but may be less if we've trimmed # away some proportion of the time. self.start_keep_proportion = 1.0 # This gives the proportion of the time of the last line in the segment # that we keep. Usually 1.0 but may be less if we've trimmed away some # proportion of the time. self.end_keep_proportion = 1.0 self.stats = None if compute_segment_stats: self.compute_stats() if segment_stats is not None: self.compute_stats() self.stats.assert_equal(segment_stats) self.stats = segment_stats def copy(self, copy_stats=True): segment = Segment(self.split_lines_of_utt, self.start_index, self.end_index, debug_str=self.debug_str, segment_stats=(None if not copy_stats else copy.deepcopy(self.stats))) segment.start_keep_proportion = self.start_keep_proportion segment.end_keep_proportion = self.end_keep_proportion segment.start_unk_padding = self.start_unk_padding segment.end_unk_padding = self.end_unk_padding return segment def __str__(self): return self.debug_info() def compute_stats(self): """Compute stats for this segment and store them in SegmentStats structure. This is typically called just before merging segments. """ self.stats = SegmentStats() for i in range(self.start_index, self.end_index): this_duration = float(self.split_lines_of_utt[i][3]) assert self.start_keep_proportion == 1.0 assert self.end_keep_proportion == 1.0 # TODO(vimal): Decide if keep proportion must be applied # if i == self.start_index: # this_duration *= self.start_keep_proportion # if i == self.end_index - 1: # this_duration *= self.end_keep_proportion if self.end_index - 1 == self.start_index: # TODO(vimal): Is this true? assert self.start_keep_proportion == self.end_keep_proportion try: if self.split_lines_of_utt[i][7] not in ['cor', 'fix', 'sil']: # TODO(vimal): The commented part below is is apparently # not true in modify_ctm_edits.py. # Need to check this or change comments there. # assert (self.split_lines_of_utt[i][6] # not in non_scored_words) assert not is_tainted(self.split_lines_of_utt[i]) self.stats.num_incorrect_words += 1 self.stats.incorrect_words_length += this_duration if self.split_lines_of_utt[i][7] == 'sil': self.stats.silence_length += this_duration else: if (self.split_lines_of_utt[i][6] not in non_scored_words()): self.stats.num_words += 1 if (is_tainted(self.split_lines_of_utt[i]) and self.split_lines_of_utt[i][7] not in 'sil' and (self.split_lines_of_utt[i][6] not in non_scored_words())): # If ref_word is not a non-scored word, this would be # counted as an incorrect word. self.stats.num_tainted_words += 1 self.stats.tainted_nonsilence_length += this_duration except Exception: _global_logger.error( "Something went wrong when computing stats at " "ctm line %s", self.split_lines_of_utt[i]) raise self.stats.total_length = self.length() try: assert (self.stats.tainted_nonsilence_length + self.stats.silence_length + self.stats.incorrect_words_length - 0.001 <= self.stats.total_length) except AssertionError: _global_logger.error( "Something wrong with the stats for segment %s", self) raise def possibly_add_tainted_lines(self): """ This is stage 1 of segment processing (after creating the boundaries of the core of the segment, which is done outside of this class). This function may reduce start_index and/or increase end_index by including a single adjacent 'tainted' line from the ctm-edits file. This is only done if the lines at the boundaries of the segment are currently real non-silence words and not non-scored words. The idea is that we probably don't want to start or end the segment right at the boundary of a real word, we want to add some kind of padding. """ split_lines_of_utt = self.split_lines_of_utt # we're iterating over the segment (start, end) for b in [False, True]: if b: boundary_index = self.end_index - 1 adjacent_index = self.end_index else: boundary_index = self.start_index adjacent_index = self.start_index - 1 if (adjacent_index >= 0 and adjacent_index < len(split_lines_of_utt)): # only consider merging the adjacent word into the segment if # we're not at the boundary of the utterance. adjacent_line_is_tainted = is_tainted( split_lines_of_utt[adjacent_index]) # if the adjacent line wasn't tainted, then there must have # been another stronger reason why we didn't include it in the # core of the segment (probably that it was an ins, del or # sub), so there is no point considering it. if adjacent_line_is_tainted: boundary_edit_type = split_lines_of_utt[boundary_index][7] boundary_ref_word = split_lines_of_utt[boundary_index][6] # Even if the edit_type is 'cor', it is possible that # column 4 (hyp_word) is not the same as column 6 # (ref_word) because the ref_word is an OOV and the # hyp_word is OOV symbol. # we only add the tainted line to the segment if the word # at the boundary was a non-silence word that was correctly # decoded and not fixed [see modify_ctm_edits.py.] if (boundary_edit_type == 'cor' and (boundary_ref_word not in non_scored_words())): # Add the adjacent tainted line to the segment. if b: self.end_index += 1 else: self.start_index -= 1 def possibly_split_segment(self, max_internal_silence_length, max_internal_non_scored_length): """ This is stage 3 of segment processing. This function will split a segment into multiple pieces if any of the internal [non-boundary] silences or non-scored words are longer than the allowed values --max-internal-silence-length and --max-internal-non-scored-length. This function returns a list of segments. In the normal case (where there is no splitting) it just returns an array with a single element 'self'. Note: --max-internal-silence-length and --max-internal-non-scored-length can be set to very large values to avoid any splitting. """ # make sure the segment hasn't been processed more than we expect. assert (self.start_unk_padding == 0.0 and self.end_unk_padding == 0.0 and self.start_keep_proportion == 1.0 and self.end_keep_proportion == 1.0) segments = [] # the answer cur_start_index = self.start_index cur_start_is_split = False # only consider splitting at non-boundary lines. [we'd just truncate # the boundary lines.] for index_to_split_at in range(cur_start_index + 1, self.end_index - 1): this_split_line = self.split_lines_of_utt[index_to_split_at] this_duration = float(this_split_line[3]) this_edit_type = this_split_line[7] this_ref_word = this_split_line[6] if ((this_edit_type == 'sil' and this_duration > max_internal_silence_length) or (this_ref_word in non_scored_words() and (this_duration > max_internal_non_scored_length))): # We split this segment at this index, dividing the word in two # [later on, in possibly_truncate_boundaries, it may be further # truncated.] # Note: we use 'index_to_split_at + 1' because the Segment # constructor takes an 'end-index' which is interpreted as one # past the end. new_segment = Segment(self.split_lines_of_utt, cur_start_index, index_to_split_at + 1, debug_str=self.debug_str) if cur_start_is_split: new_segment.start_keep_proportion = 0.5 new_segment.end_keep_proportion = 0.5 cur_start_is_split = True cur_start_index = index_to_split_at segments.append(new_segment) if len(segments) == 0: # We did not split. segments.append(self) else: # We did split. Add the very last segment. new_segment = Segment(self.split_lines_of_utt, cur_start_index, self.end_index, debug_str=self.debug_str) assert cur_start_is_split new_segment.start_keep_proportion = 0.5 segments.append(new_segment) return segments def possibly_split_long_segment(self, max_segment_length, hard_max_segment_length, min_silence_length_to_split, min_non_scored_length_to_split): """ This is stage 4 of segment processing. This function will split a segment into multiple pieces if it is longer than the value --max-segment-length. It tries to split at silences and non-scored words that are at least --min-silence-length-to-split or --min-non-scored-length-to-split long. If this is not possible and the segments are still longer than --hard-max-segment-length, then this is split into equal length pieces of approximately --max-segment-length long. This function returns a list of segments. In the normal case (where there is no splitting) it just returns an array with a single element 'self'. """ # make sure the segment hasn't been processed more than we expect. assert self.start_unk_padding == 0.0 and self.end_unk_padding == 0.0 if self.length() < max_segment_length: return [self] segments = [self] # the answer cur_start_index = self.start_index split_indexes = [] # only consider splitting at non-boundary lines. [we'd just truncate # the boundary lines.] for index_to_split_at in range(cur_start_index + 1, self.end_index - 1): this_split_line = self.split_lines_of_utt[index_to_split_at] this_duration = float(this_split_line[3]) this_edit_type = this_split_line[7] this_ref_word = this_split_line[6] this_is_tainted = is_tainted(this_split_line) if (this_edit_type == 'sil' and this_duration > min_silence_length_to_split): split_indexes.append((index_to_split_at, this_duration, this_is_tainted)) if (this_ref_word in non_scored_words() and (this_duration > min_non_scored_length_to_split)): split_indexes.append((index_to_split_at, this_duration, this_is_tainted)) split_indexes.sort(key=lambda x: x[1], reverse=True) split_indexes.sort(key=lambda x: x[2]) while True: if len(split_indexes) == 0: break new_segments = [] for segment in segments: if segment.length() < max_segment_length: new_segments.append(segment) continue try: index_to_split_at = next( (x[0] for x in split_indexes if (x[0] > segment.start_index and x[0] < segment.end_index - 1))) except StopIteration: _global_logger.debug( "Could not find an index in the range (%d, %d) in " "split-indexes %s", segment.start_index, segment.end_index - 1, split_indexes) new_segments.append(segment) continue # We split this segment at this index, dividing the word in two # [later on, in possibly_truncate_boundaries, it may be further # truncated.] # Note: we use 'index_to_split_at + 1' because the Segment # constructor takes an 'end-index' which is interpreted as one # past the end. new_segment = Segment( self.split_lines_of_utt, segment.start_index, index_to_split_at + 1, debug_str=self.debug_str) new_segment.end_keep_proportion = 0.5 new_segments.append(new_segment) new_segment = Segment( self.split_lines_of_utt, index_to_split_at, segment.end_index, debug_str=self.debug_str) new_segment.start_keep_proportion = 0.5 new_segments.append(new_segment) if len(segments) == len(new_segments): # No splitting done break segments = new_segments for i, x in enumerate(segments): _global_logger.debug("Segment %d = %s", i, x) new_segments = [] # Split segments that are still very long for segment in segments: if segment.length() < hard_max_segment_length: new_segments.append(segment) continue cur_start_index = segment.start_index cur_start = segment.start_time() index_to_split_at = None try: while True: index_to_split_at = next( (i for i in range(cur_start_index, segment.end_index) if (float(self.split_lines_of_utt[i][2]) >= cur_start + max_segment_length))) new_segment = Segment( self.split_lines_of_utt, cur_start_index, index_to_split_at) new_segments.append(new_segment) cur_start_index = index_to_split_at cur_start = float( self.split_lines_of_utt[cur_start_index][2]) index_to_split_at = None if (segment.end_time() - cur_start < hard_max_segment_length): raise StopIteration except StopIteration: if index_to_split_at is None: _global_logger.debug( "Could not find an index in the range (%d, %d) with " "start time > %.2f", cur_start_index, segment.end_index, cur_start + max_segment_length) new_segment = Segment( self.split_lines_of_utt, cur_start_index, segment.end_index) new_segments.append(new_segment) break segments = new_segments return segments def possibly_truncate_boundaries(self, max_edge_silence_length, max_edge_non_scored_length): """ This is stage 5 of segment processing. It will truncate the silences and non-scored words at the segment boundaries if they are longer than the --max-edge-silence-length and --max-edge-non-scored-length respectively (and to the extent that this wouldn't take us below the --min-segment-length or --min-new-segment-length. See relax_boundary_truncation()). Note: --max-edge-silence-length and --max-edge-non-scored-length can be set to very large values to avoid any truncation. """ for b in [True, False]: if b: this_index = self.start_index else: this_index = self.end_index - 1 this_split_line = self.split_lines_of_utt[this_index] truncated_duration = None this_duration = float(this_split_line[3]) this_edit = this_split_line[7] this_ref_word = this_split_line[6] if (this_edit == 'sil' and this_duration > max_edge_silence_length): truncated_duration = max_edge_silence_length elif (this_ref_word in non_scored_words() and this_duration > max_edge_non_scored_length): truncated_duration = max_edge_non_scored_length if truncated_duration is not None: keep_proportion = truncated_duration / this_duration if b: self.start_keep_proportion = keep_proportion else: self.end_keep_proportion = keep_proportion def relax_boundary_truncation(self, min_segment_length, min_new_segment_length): """ This relaxes the segment-boundary truncation of possibly_truncate_boundaries(), if it would take us below min-new-segment-length or min-segment-length. Note: this does not relax the boundary truncation for a particular boundary (start or end) if that boundary corresponds to a 'tainted' line of the ctm (because it's dangerous to include too much 'tainted' audio). """ # this should be called before adding unk padding. assert self.start_unk_padding == self.end_unk_padding == 0.0 if self.start_keep_proportion == self.end_keep_proportion == 1.0: return # nothing to do there was no truncation. length_cutoff = max(min_new_segment_length, min_segment_length) length_with_truncation = self.length() if length_with_truncation >= length_cutoff: return # Nothing to do. orig_start_keep_proportion = self.start_keep_proportion orig_end_keep_proportion = self.end_keep_proportion if not is_tainted(self.split_lines_of_utt[self.start_index]): self.start_keep_proportion = 1.0 if not is_tainted(self.split_lines_of_utt[self.end_index - 1]): self.end_keep_proportion = 1.0 length_with_relaxed_boundaries = self.length() if length_with_relaxed_boundaries <= length_cutoff: # Completely undo the truncation [to the extent allowed by the # presence of tainted lines at the start/end] if, even without # truncation, we'd be below the length cutoff. This segment may be # removed later on (but it may not, if removing truncation makes us # identical to the input utterance, and the length is between # min_segment_length min_new_segment_length). return # Next, compute an interpolation constant a such that the # {start,end}_keep_proportion values will equal # a # * [values-computed-by-possibly_truncate_boundaries()] # + (1-a) * [completely-relaxed-values]. # we're solving the equation: # length_cutoff = a * length_with_truncation # + (1-a) * length_with_relaxed_boundaries # -> length_cutoff - length_with_relaxed_boundaries = # a * (length_with_truncation - length_with_relaxed_boundaries) # -> a = (length_cutoff - length_with_relaxed_boundaries) # / (length_with_truncation - length_with_relaxed_boundaries) a = (length_cutoff - length_with_relaxed_boundaries) / (length_with_truncation - length_with_relaxed_boundaries) if a < 0.0 or a > 1.0: # TODO(vimal): Should this be an error? _global_logger.warn("bad 'a' value = %.4f", a) return self.start_keep_proportion = ( a * orig_start_keep_proportion + (1 - a) * self.start_keep_proportion) self.end_keep_proportion = ( a * orig_end_keep_proportion + (1 - a) * self.end_keep_proportion) if abs(self.length() - length_cutoff) >= 0.01: # TODO(vimal): Should this be an error? _global_logger.warn( "possible problem relaxing boundary " "truncation, length is %.2f vs %.2f", self.length(), length_cutoff) def possibly_add_unk_padding(self, max_unk_padding): """ This is stage 7 of segment processing. This function may set start_unk_padding and end_unk_padding to nonzero values. This is done if the current boundary words are real, scored words and we're not next to the beginning or end of the utterance. """ for b in [True, False]: if b: this_index = self.start_index else: this_index = self.end_index - 1 this_split_line = self.split_lines_of_utt[this_index] this_start_time = float(this_split_line[2]) this_ref_word = this_split_line[6] this_edit = this_split_line[7] if this_edit == 'cor' and this_ref_word not in non_scored_words(): # we can consider adding unk-padding. if b: # start of utterance. unk_padding = max_unk_padding # close to beginning of file if unk_padding > this_start_time: unk_padding = this_start_time # If we could add less than half of the specified # unk-padding, don't add any (because when we add # unk-padding we add the unknown-word symbol '<unk>', and # if there isn't enough space to traverse the HMM we don't # want to do it at all. if unk_padding < 0.5 * max_unk_padding: unk_padding = 0.0 self.start_unk_padding = unk_padding else: # end of utterance. this_end_time = this_start_time + float(this_split_line[3]) last_line = self.split_lines_of_utt[-1] utterance_end_time = (float(last_line[2]) + float(last_line[3])) max_allowable_padding = utterance_end_time - this_end_time assert max_allowable_padding > -0.01 unk_padding = max_unk_padding if unk_padding > max_allowable_padding: unk_padding = max_allowable_padding # If we could add less than half of the specified # unk-padding, don't add any (because when we add # unk-padding we add the unknown-word symbol '<unk>', # and if there isn't enough space to traverse the HMM we # don't want to do it at all. if unk_padding < 0.5 * max_unk_padding: unk_padding = 0.0 self.end_unk_padding = unk_padding def start_time(self): """Returns the start time of the utterance (within the enclosing utterance). This is before any rounding. """ if self.start_index == len(self.split_lines_of_utt): assert self.end_index == len(self.split_lines_of_utt) return self.end_time() first_line = self.split_lines_of_utt[self.start_index] first_line_start = float(first_line[2]) first_line_duration = float(first_line[3]) first_line_end = first_line_start + first_line_duration return (first_line_end - self.start_unk_padding - (first_line_duration * self.start_keep_proportion)) def debug_info(self, include_stats=True): """Returns some string-valued information about 'this' that is useful for debugging.""" if include_stats and self.stats is not None: stats = 'wer={wer:.2f},{stats},'.format( wer=self.stats.wer(), stats=self.stats) else: stats = '' return ('start={start:d},end={end:d},' 'unk-padding={start_unk_padding:.2f},{end_unk_padding:.2f},' 'keep-proportion={start_prop:.2f},{end_prop:.2f},' 'start-time={start_time:.2f},end-time={end_time:.2f},' '{stats}' 'debug-str={debug_str}'.format( start=self.start_index, end=self.end_index, start_unk_padding=self.start_unk_padding, end_unk_padding=self.end_unk_padding, start_prop=self.start_keep_proportion, end_prop=self.end_keep_proportion, start_time=self.start_time(), end_time=self.end_time(), stats=stats, debug_str=self.debug_str)) def end_time(self): """Returns the start time of the utterance (within the enclosing utterance).""" if self.end_index == 0: assert self.start_index == 0 return self.start_time() last_line = self.split_lines_of_utt[self.end_index - 1] last_line_start = float(last_line[2]) last_line_duration = float(last_line[3]) return (last_line_start + (last_line_duration * self.end_keep_proportion) + self.end_unk_padding) def length(self): """Returns the segment length in seconds.""" return self.end_time() - self.start_time() def is_whole_utterance(self): """returns true if this segment corresponds to the whole utterance that it's a part of (i.e. its start/end time are zero and the end-time of the last segment.""" last_line_of_utt = self.split_lines_of_utt[-1] last_line_end_time = (float(last_line_of_utt[2]) + float(last_line_of_utt[3])) return (abs(self.start_time() - 0.0) < 0.001 and abs(self.end_time() - last_line_end_time) < 0.001) def get_junk_proportion(self): """Returns the proportion of the duration of this segment that consists of unk-padding and tainted lines of input (will be between 0.0 and 1.0).""" # Note: only the first and last lines could possibly be tainted as # that's how we create the segments; and if either or both are tainted # the utterance must contain other lines, so double-counting is not a # problem. junk_duration = self.start_unk_padding + self.end_unk_padding first_split_line = self.split_lines_of_utt[self.start_index] if is_tainted(first_split_line): first_duration = float(first_split_line[3]) junk_duration += first_duration * self.start_keep_proportion last_split_line = self.split_lines_of_utt[self.end_index - 1] if is_tainted(last_split_line): last_duration = float(last_split_line[3]) junk_duration += last_duration * self.end_keep_proportion return junk_duration / self.length() def get_junk_duration(self): """Returns duration of junk""" return self.get_junk_proportion() * self.length() def merge_adjacent_segment(self, other): """ This function will merge the segment in 'other' with the segment in 'self'. It is only to be called when 'self' and 'other' are from the same utterance, 'other' is after 'self' in time order (based on the original segment cores), and self.end_index <= self.start_index i.e. the two segments might have at most one index in common, which is usually a tainted word or silence. """ try: assert self.end_index <= other.start_index + 1 assert self.start_time() < other.end_time() assert self.split_lines_of_utt is other.split_lines_of_utt except AssertionError: _global_logger.error("self: %s", self) _global_logger.error("other: %s", other) raise assert self.start_index == 0 or self.start_index != other.start_index _global_logger.debug("Before merging: %s", self) assert not self.stats.compare(other.stats), "%s %s" % (self, other) self.stats.combine(other.stats) if self.end_index == other.start_index + 1: overlapping_segment = Segment( self.split_lines_of_utt, other.start_index, self.end_index, compute_segment_stats=True) self.stats.combine(overlapping_segment.stats, scale=-1) _global_logger.debug("Other segment: %s", other) self.debug_str = "({0}/merged-with-adjacent/{1})".format( self.debug_str, other.debug_str) # everything that relates to the end of this segment gets copied # from 'other'. self.end_index = other.end_index self.end_unk_padding = other.end_unk_padding self.end_keep_proportion = other.end_keep_proportion _global_logger.debug("After merging %s", self) return def merge_with_segment(self, other, max_deleted_words): """ This function will merge the segment in 'other' with the segment in 'self'. It is only to be called when 'self' and 'other' are from the same utterance, 'other' is after 'self' in time order (based on the original segment cores), and self.end_time() >= other.start_time(). Note: in this situation there will normally be deleted words between the two segments. What this program does with the deleted words depends on '--max-deleted-words-kept-when-merging'. If there were any inserted words in the transcript (less likely), this program will keep the reference. Note: --max-deleted-words-kept-when-merging can be set to a very large value to keep all the words. """ try: assert self.end_time() >= other.start_time() assert self.start_time() < other.end_time() assert self.split_lines_of_utt is other.split_lines_of_utt except AssertionError: _global_logger.error("self: %s", self) _global_logger.error("other: %s", other) raise assert self.start_index == 0 or self.start_index != other.start_index _global_logger.debug("Before merging: %s", self) assert (not self.stats.compare(other.stats) or self.start_time() != other.start_time() or self.end_time() != other.end_time() ), "%s %s" % (self, other) self.stats.combine(other.stats) _global_logger.debug("Other segment: %s", other) orig_self_end_index = self.end_index self.debug_str = "({0}/merged-with/{1})".format( self.debug_str, other.debug_str) # everything that relates to the end of this segment gets copied # from 'other'. self.end_index = other.end_index self.end_unk_padding = other.end_unk_padding self.end_keep_proportion = other.end_keep_proportion _global_logger.debug("After merging %s", self) # The next thing we have to do is to go over any lines of the ctm that # appear between 'self' and 'other', or are shared between both (this # would only happen for tainted silence or non-scored-word segments), # and decide what to do with them. We'll keep the reference for any # substitutions or insertions (which anyway are unlikely to appear # in these merged segments). Note: most of this happens in # self.Text(), but at this point we need to decide whether to mark any # deletions as 'discard-this-word'. try: if orig_self_end_index <= other.start_index: # No overlap in indexes first_index_of_overlap = orig_self_end_index last_index_of_overlap = other.start_index - 1 segment = Segment( self.split_lines_of_utt, orig_self_end_index, other.start_index, compute_segment_stats=True) self.stats.combine(segment.stats) else: first_index_of_overlap = other.start_index last_index_of_overlap = orig_self_end_index - 1 num_deleted_words = 0 for i in range(first_index_of_overlap, last_index_of_overlap + 1): edit_type = self.split_lines_of_utt[i][7] if edit_type == 'del': num_deleted_words += 1 if num_deleted_words > max_deleted_words: for i in range(first_index_of_overlap, last_index_of_overlap + 1): if self.split_lines_of_utt[i][7] == 'del': self.split_lines_of_utt[i].append( 'do-not-include-in-text') except: _global_logger.error( "first-index-of-overlap = %d", first_index_of_overlap) _global_logger.error( "last-index-of-overlap = %d", last_index_of_overlap) _global_logger.error("line = %d = %s", i, self.split_lines_of_utt[i]) raise _global_logger.debug("After merging %s", self) def contains_atleast_one_scored_non_oov_word(self): """ this will return true if there is at least one word in the utterance that's a scored word (not a non-scored word) and not an OOV word that's realized as unk. This becomes a filter on keeping segments. """ for i in range(self.start_index, self.end_index): this_split_line = self.split_lines_of_utt[i] this_hyp_word = this_split_line[4] this_ref_word = this_split_line[6] this_edit = this_split_line[7] if (this_edit == 'cor' and this_ref_word not in non_scored_words() and this_ref_word == this_hyp_word): return True return False def text(self, oov_symbol, eps_symbol="<eps_symbol>"): """Returns the text corresponding to this utterance, as a string.""" text_array = [] if self.start_unk_padding != 0.0: text_array.append(oov_symbol) for i in range(self.start_index, self.end_index): this_split_line = self.split_lines_of_utt[i] this_ref_word = this_split_line[6] if (this_ref_word != eps_symbol and this_split_line[-1] != 'do-not-include-in-text'): text_array.append(this_ref_word) if self.end_unk_padding != 0.0: text_array.append(oov_symbol) return ' '.join(text_array) class SegmentsMerger(object): """This class contains methods for merging segments. It stores the appropriate statistics required for this process in objects of SegmentStats class. Paramters: segments - a reference to the list of inital segments merged_segments - stores all the initial segments as well as the newly created segments between_segments - stores the inter-segment "segments" for the initial segments split_lines_of_utt - a reference to the CTM lines """ def __init__(self, segments): self.segments = segments try: self.split_lines_of_utt = segments[0].split_lines_of_utt except IndexError as e: _global_logger.error("No input segments found!") raise e self.merged_segments = {} self.between_segments = [None for i in range(len(segments) + 1)] if segments[0].start_index > 0: self.between_segments[0] = Segment( self.split_lines_of_utt, 0, segments[0].start_index, compute_segment_stats=True) for i, x in enumerate(segments): x.compute_stats() self.merged_segments[(i, )] = x if i > 0 and segments[i].start_index > segments[i - 1].end_index: self.between_segments[i] = Segment( self.split_lines_of_utt, segments[i - 1].end_index, segments[i].start_index, compute_segment_stats=True) if segments[-1].end_index < len(self.split_lines_of_utt): self.between_segments[-1] = Segment( self.split_lines_of_utt, segments[-1].end_index, len(self.split_lines_of_utt), compute_segment_stats=True) def _get_merged_cluster(self, cluster1, cluster2, rejected_clusters=None, max_intersegment_incorrect_words_length=1): try: assert cluster2[0] > cluster1[-1] new_cluster = cluster1 + cluster2 new_cluster_tup = tuple(new_cluster) if (rejected_clusters is not None and new_cluster_tup in rejected_clusters): return (None, new_cluster, True) if new_cluster_tup in self.merged_segments: return (self.merged_segments[new_cluster_tup], new_cluster, False) if cluster1[-1] == -1: assert len(cluster1) == 1 # Consider merging cluster2 with the region before the 0^th # segment if (self.between_segments[0] is None or self.between_segments[0].stats.total_length == 0 or (self.between_segments[0] .stats.incorrect_words_length > max_intersegment_incorrect_words_length)): # Reject zero length or bad start region return (None, new_cluster, True) merged_segment = self.between_segments[0].copy() else: merged_segment = self.merged_segments[tuple(cluster1)].copy() if cluster2[0] == len(self.segments): assert len(cluster2) == 1 if (self.between_segments[-1] is None or (self.between_segments[-1] .stats.total_length == 0) or (self.between_segments[-1] .stats.incorrect_words_length > max_intersegment_incorrect_words_length)): # Reject zero length or bad end region return (None, new_cluster, True) if self.between_segments[cluster2[0]] is not None: if (self.between_segments[cluster2[0]] .stats.incorrect_words_length > max_intersegment_incorrect_words_length): return (None, new_cluster, True) merged_segment.merge_adjacent_segment( self.between_segments[cluster2[0]]) if cluster2[0] < len(self.segments): merged_segment.merge_adjacent_segment( self.merged_segments[tuple(cluster2)]) # else: # Already done # merged_segment.merge_adjacent_segment(self.between_segments[-1]) self.merged_segments[new_cluster_tup] = merged_segment return (merged_segment, new_cluster, False) except: _global_logger.error("Failed merging cluster1 %s and cluster2 %s", cluster1, cluster2) for i in (cluster1 + cluster2): if i >= 0 and i < len(self.segments): _global_logger.error("Segment %d = %s", i, self.segments[i]) raise def merge_clusters(self, scoring_function, max_wer=10, max_bad_proportion=0.3, max_segment_length=10, max_intersegment_incorrect_words_length=1): for i, x in enumerate(self.segments): _global_logger.debug("before agglomerative clustering, segment %d" " = %s", i, x) # Initial clusters are the individual segments themselves. clusters = [[x] for x in range(-1, len(self.segments) + 1)] rejected_clusters = set() while len(clusters) > 1: try: _global_logger.debug("Current clusters: %s", clusters) heap = [] for i in range(len(clusters) - 1): merged_segment, new_cluster, reject = ( self._get_merged_cluster( clusters[i], clusters[i + 1], rejected_clusters, max_intersegment_incorrect_words_length=( max_intersegment_incorrect_words_length))) if reject: rejected_clusters.add(tuple(new_cluster)) continue heapq.heappush(heap, ((-scoring_function(merged_segment), i), (merged_segment, i, new_cluster))) candidate_index = -1 candidate_cluster = None while True: try: score, tup = heapq.heappop(heap) except IndexError: break segment, index, cluster = tup _global_logger.debug( "Considering new cluster: (%d, %s)", index, cluster) if segment.stats.wer() > max_wer: _global_logger.debug( "Rejecting cluster with " "WER%% %.2f > %.2f", segment.stats.wer(), max_wer) rejected_clusters.add(tuple(cluster)) continue if segment.stats.bad_proportion() > max_bad_proportion: _global_logger.debug( "Rejecting cluster with bad-proportion " "%.2f > %.2f", segment.stats.bad_proportion(), max_bad_proportion) rejected_clusters.add(tuple(cluster)) continue if segment.stats.total_length > max_segment_length: _global_logger.debug( "Rejecting cluster with length " "%.2f > %.2f", segment.stats.total_length, max_segment_length) rejected_clusters.add(tuple(cluster)) continue candidate_index, candidate_cluster = tup[1:] _global_logger.debug("Accepted cluster (%d, %s)", candidate_index, candidate_cluster) break if candidate_index == -1: return clusters new_clusters = [] for i in range(candidate_index): new_clusters.append(clusters[i]) new_clusters.append(candidate_cluster) for i in range(candidate_index + 2, len(clusters)): new_clusters.append(clusters[i]) if len(new_clusters) >= len(clusters): raise RuntimeError("Old: {0}; New: {1}".format( clusters, new_clusters)) clusters = new_clusters except Exception: _global_logger.error( "Failed merging clusters %s", clusters) raise return clusters def merge_segments(segments, args): if len(segments) == 0: _global_logger.debug("Got no segments at merging segments stage") return [] def scoring_function(segment): stats = segment.stats try: return (-stats.wer() - args.silence_factor * stats.silence_length - args.incorrect_words_factor * stats.incorrect_words_length - args.tainted_words_factor * stats.num_tainted_words * 100.0 / stats.num_words) except ZeroDivisionError: return float("-inf") # Do agglomerative clustering on the initial segments with the score # for combining neighboring segments being the scoring_function on the # stats of the combined segment. merger = SegmentsMerger(segments) clusters = merger.merge_clusters( scoring_function, max_wer=args.max_wer, max_bad_proportion=args.max_bad_proportion, max_segment_length=args.max_segment_length_for_merging, max_intersegment_incorrect_words_length=( args.max_intersegment_incorrect_words_length)) _global_logger.debug("Clusters to be merged: %s", clusters) # Do the actual merging based on the clusters. new_segments = [] for cluster_index, cluster in enumerate(clusters): _global_logger.debug( "Merging cluster (%d, %s)", cluster_index, cluster) try: if cluster_index == 0 and len(cluster) == 1: assert cluster[0] == -1 _global_logger.debug( "Not adding region before the first segment") # skip adding the lines before the initial segment if its # not merged with the initial segment continue elif cluster_index == len(clusters) - 1 and len(cluster) == 1: _global_logger.debug( "Not adding remaining end region %s", cluster[0]) assert cluster[0] == len(segments) # skip adding the lines after the last segment if its # not merged with the last segment break new_segments.append(merger.merged_segments[tuple(cluster)]) except Exception: _global_logger.error("Error with cluster (%d, %s)", cluster_index, cluster) raise segments = new_segments for i, x in enumerate(segments): _global_logger.debug( "after agglomerative clustering: segment %d = %s", i, x) assert len(segments) > 0 segment_index = 0 # Ignore all the initial segments that have WER > max_wer while segment_index < len(segments): segment = segments[segment_index] if segment.stats.wer() < args.max_wer: break segment_index += 1 if segment_index == len(segments): _global_logger.debug("No merged segments were below " "WER%% %.2f", args.max_wer) return [] _global_logger.debug("Merging overlapping segments starting from the " "first segment with WER%% < max_wer i.e. %d = %s", segment_index, segments[segment_index]) new_segments = [segments[segment_index]] segment_index += 1 while segment_index < len(segments): if segments[segment_index].stats.wer() > args.max_wer: # ignore this segment segment_index += 1 continue if new_segments[-1].end_time() >= segments[segment_index].start_time(): new_segments[-1].merge_with_segment( segments[segment_index], args.max_deleted_words) else: new_segments.append(segments[segment_index]) segment_index += 1 segments = new_segments return segments def get_segments_for_utterance(split_lines_of_utt, args, utterance_stats): """ This function creates the segments for an utterance as a list of class Segment. It returns a 2-tuple (list-of-segments, list-of-deleted-segments) where the deleted segments are only useful for diagnostic printing. Note: split_lines_of_utt is a list of lists, one per line, each containing the sequence of fields. """ utterance_stats.num_utterances += 1 segment_ranges = compute_segment_cores(split_lines_of_utt) utterance_end_time = (float(split_lines_of_utt[-1][2]) + float(split_lines_of_utt[-1][3])) utterance_stats.total_length_of_utterances += utterance_end_time segments = [Segment(split_lines_of_utt, x[0], x[1]) for x in segment_ranges] utterance_stats.accumulate_segment_stats( segments, 'stage 0 [segment cores]') for i, x in enumerate(segments): _global_logger.debug("stage 0: segment %d = %s", i, x) if args.verbose > 4: print("Stage 0 [segment cores]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) for segment in segments: segment.possibly_add_tainted_lines() utterance_stats.accumulate_segment_stats( segments, 'stage 1 [add tainted lines]') for i, x in enumerate(segments): _global_logger.debug("stage 1: segment %d = %s", i, x) if args.verbose > 4: print("Stage 1 [add tainted lines]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) segments = merge_segments(segments, args) utterance_stats.accumulate_segment_stats( segments, 'stage 2 [merge segments]') for i, x in enumerate(segments): _global_logger.debug("stage 2: segment %d = %s", i, x) if args.verbose > 4: print("Stage 2 [merge segments]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) new_segments = [] for s in segments: new_segments += s.possibly_split_segment( args.max_internal_silence_length, args.max_internal_non_scored_length) segments = new_segments utterance_stats.accumulate_segment_stats( segments, 'stage 3 [split segments]') for i, x in enumerate(segments): _global_logger.debug( "stage 3: segment %d, %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 3 [split segments]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) new_segments = [] for s in segments: new_segments += s.possibly_split_long_segment( args.max_segment_length_for_splitting, args.hard_max_segment_length, args.min_silence_length_to_split, args.min_non_scored_length_to_split) segments = new_segments utterance_stats.accumulate_segment_stats( segments, 'stage 4 [split long segments]') for i, x in enumerate(segments): _global_logger.debug( "stage 4: segment %d, %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 4 [split long segments]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) for s in segments: s.possibly_truncate_boundaries(args.max_edge_silence_length, args.max_edge_non_scored_length) utterance_stats.accumulate_segment_stats( segments, 'stage 5 [truncate boundaries]') for i, x in enumerate(segments): _global_logger.debug( "stage 5: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 5 [truncate boundaries]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) for s in segments: s.relax_boundary_truncation(args.min_segment_length, args.min_new_segment_length) utterance_stats.accumulate_segment_stats( segments, 'stage 6 [relax boundary truncation]') for i, x in enumerate(segments): _global_logger.debug( "stage 6: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 6 [relax boundary truncation]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) for s in segments: s.possibly_add_unk_padding(args.unk_padding) utterance_stats.accumulate_segment_stats( segments, 'stage 7 [unk-padding]') for i, x in enumerate(segments): _global_logger.debug( "stage 7: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 7 [unk-padding]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) deleted_segments = [] new_segments = [] for s in segments: # the 0.999 allows for roundoff error. if (not s.is_whole_utterance() and s.length() < 0.999 * args.min_new_segment_length): s.debug_str += '[deleted-because-of--min-new-segment-length]' deleted_segments.append(s) else: new_segments.append(s) segments = new_segments utterance_stats.accumulate_segment_stats( segments, 'stage 8 [remove new segments under --min-new-segment-length') for i, x in enumerate(segments): _global_logger.debug( "stage 8: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 8 [remove new segments under " "--min-new-segment-length]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) new_segments = [] for s in segments: # the 0.999 allows for roundoff error. if s.length() < 0.999 * args.min_segment_length: s.debug_str += '[deleted-because-of--min-segment-length]' deleted_segments.append(s) else: new_segments.append(s) segments = new_segments utterance_stats.accumulate_segment_stats( segments, 'stage 9 [remove segments under --min-segment-length]') for i, x in enumerate(segments): _global_logger.debug( "stage 9: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 9 [remove segments under " "--min-segment-length]:", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) new_segments = [] for s in segments: if s.contains_atleast_one_scored_non_oov_word(): new_segments.append(s) else: s.debug_str += '[deleted-because-no-scored-non-oov-words]' deleted_segments.append(s) segments = new_segments utterance_stats.accumulate_segment_stats( segments, 'stage 10 [remove segments without scored,non-OOV words]') for i, x in enumerate(segments): _global_logger.debug( "stage 10: segment %d = %s", i, x.debug_info(False)) if args.verbose > 4: print("Stage 10 [remove segments without scored, non-OOV words " "", file=sys.stderr) segments_copy = [x.copy() for x in segments] print_debug_info_for_utterance(sys.stderr, copy.deepcopy(split_lines_of_utt), segments_copy, []) for i in range(len(segments) - 1): if segments[i].end_time() > segments[i + 1].start_time(): # this just adds something to --ctm-edits-out output segments[i + 1].debug_str += ",overlaps-previous-segment" if len(segments) == 0: utterance_stats.num_utterances_without_segments += 1 return (segments, deleted_segments) def float_to_string(f): """ this prints a number with a certain number of digits after the point, while removing trailing zeros. """ num_digits = 6 # we want to print 6 digits after the zero g = f while abs(g) > 1.0: g *= 0.1 num_digits += 1 format_str = '%.{0}g'.format(num_digits) return format_str % f def time_to_string(time, frame_length): """ Gives time in string form as an exact multiple of the frame-length, e.g. 0.01 (after rounding). """ n = round(time / frame_length) assert n >= 0 # The next function call will remove trailing zeros while printing it, so # that e.g. 0.01 will be printed as 0.01 and not 0.0099999999999999. It # seems that doing this in a simple way is not really possible (at least, # not without assuming that frame_length is of the form 10^-n, which we # don't really want to do). return float_to_string(n * frame_length) def write_segments_for_utterance(text_output_handle, segments_output_handle, old_utterance_name, segments, oov_symbol, eps_symbol="<eps>", frame_length=0.01): num_digits = len(str(len(segments))) for n, segment in enumerate(segments): # split utterances will be named foo-bar-1 foo-bar-2, etc. new_utterance_name = "{old}-{index:0{width}}".format( old=old_utterance_name, index=n+1, width=num_digits) # print a line to the text output of the form like # <new-utterance-id> <text> # like: # foo-bar-1 hello this is dan print(new_utterance_name, segment.text(oov_symbol, eps_symbol), file=text_output_handle) # print a line to the segments output of the form # <new-utterance-id> <old-utterance-id> <start-time> <end-time> # like: # foo-bar-1 foo-bar 5.1 7.2 print(new_utterance_name, old_utterance_name, time_to_string(segment.start_time(), frame_length), time_to_string(segment.end_time(), frame_length), file=segments_output_handle) # Note, this is destrutive of 'segments_for_utterance', but it won't matter. def print_debug_info_for_utterance(ctm_edits_out_handle, split_lines_of_cur_utterance, segments_for_utterance, deleted_segments_for_utterance, frame_length=0.01): # info_to_print will be list of 2-tuples # (time, 'start-segment-n'|'end-segment-n') # representing the start or end times of segments. info_to_print = [] for n, segment in enumerate(segments_for_utterance): start_string = 'start-segment-{0}[{1}]'.format(n + 1, segment.debug_info()) info_to_print.append((segment.start_time(), start_string)) end_string = 'end-segment-{0}'.format(n + 1) info_to_print.append((segment.end_time(), end_string)) # for segments that were deleted we print info like # start-deleted-segment-1, and otherwise similar info to segments that were # retained. for n, segment in enumerate(deleted_segments_for_utterance): start_string = 'start-deleted-segment-{0}[{1}]'.format( n + 1, segment.debug_info(False)) info_to_print.append((segment.start_time(), start_string)) end_string = 'end-deleted-segment-{0}'.format(n + 1) info_to_print.append((segment.end_time(), end_string)) info_to_print = sorted(info_to_print) for i, split_line in enumerate(split_lines_of_cur_utterance): # add an index like [0], [1], to the utterance-id so we can easily look # up segment indexes. split_line[0] += '[{0}]'.format(i) start_time = float(split_line[2]) end_time = start_time + float(split_line[3]) split_line_copy = list(split_line) while len(info_to_print) > 0 and info_to_print[0][0] <= end_time: (segment_start, string) = info_to_print[0] # shift the first element off of info_to_print. info_to_print = info_to_print[1:] # add a field like 'start-segment1[...]=3.21' to what we're about # to print. split_line_copy.append( '{0}={1}'.format(string, time_to_string(segment_start, frame_length))) print(' '.join(split_line_copy), file=ctm_edits_out_handle) class WordStats(object): """ This accumulates word-level stats about, for each reference word, with what probability it will end up in the core of a segment. Words with low probabilities of being in segments will generally be associated with some kind of error (there is a higher probability of having a wrong lexicon entry). """ def __init__(self): self.word_count_pair = defaultdict(lambda: [0, 0]) def accumulate_for_utterance(self, split_lines_of_utt, segments_for_utterance, eps_symbol="<eps>"): # word_count_pair is a map from a string (the word) to # a list [total-count, count-not-within-segments] line_is_in_segment = [False] * len(split_lines_of_utt) for segment in segments_for_utterance: for i in range(segment.start_index, segment.end_index): line_is_in_segment[i] = True for i, split_line in enumerate(split_lines_of_utt): this_ref_word = split_line[6] if this_ref_word != eps_symbol: self.word_count_pair[this_ref_word][0] += 1 if not line_is_in_segment[i]: self.word_count_pair[this_ref_word][1] += 1 def print(self, word_stats_out): # Sort from most to least problematic. We want to give more prominence # to words that are most frequently not in segments, but also to # high-count words. Define badness = pair[1] / pair[0], and # total_count = pair[0], where 'pair' is a value of word_count_pair. # We'll reverse sort on badness^3 * total_count = pair[1]^3 / # pair[0]^2. for key, pair in sorted( self.word_count_pair.items(), key=lambda item: (item[1][1] ** 3) * 1.0 / (item[1][0] ** 2), reverse=True): badness = pair[1] * 1.0 / pair[0] total_count = pair[0] print(key, badness, total_count, file=word_stats_out) try: word_stats_out.close() except: _global_logger.error("error closing file --word-stats-out=%s " "(full disk?)", word_stats_out.name) raise _global_logger.info( """please see the file %s for word-level statistics saying how frequently each word was excluded for a segment; format is <word> <proportion-of-time-excluded> <total-count>. Particularly problematic words appear near the top of the file.""", word_stats_out.name) def process_data(args, oov_symbol, utterance_stats, word_stats): """ Most of what we're doing in the lines below is splitting the input lines and grouping them per utterance, before giving them to get_segments_for_utterance() and then printing the modified lines. """ first_line = args.ctm_edits_in.readline() if first_line == '': sys.exit("segment_ctm_edits.py: empty input") split_pending_line = first_line.split() if len(split_pending_line) == 0: sys.exit("segment_ctm_edits.py: bad input line " + first_line) cur_utterance = split_pending_line[0] split_lines_of_cur_utterance = [] while True: try: if (len(split_pending_line) == 0 or split_pending_line[0] != cur_utterance): # Read one whole utterance. Now process it. (segments_for_utterance, deleted_segments_for_utterance) = get_segments_for_utterance( split_lines_of_cur_utterance, args=args, utterance_stats=utterance_stats) word_stats.accumulate_for_utterance( split_lines_of_cur_utterance, segments_for_utterance) write_segments_for_utterance( args.text_out, args.segments_out, cur_utterance, segments_for_utterance, oov_symbol=oov_symbol, frame_length=args.frame_length) if args.ctm_edits_out is not None: print_debug_info_for_utterance( args.ctm_edits_out, split_lines_of_cur_utterance, segments_for_utterance, deleted_segments_for_utterance, frame_length=args.frame_length) split_lines_of_cur_utterance = [] if len(split_pending_line) == 0: break else: cur_utterance = split_pending_line[0] split_lines_of_cur_utterance.append(split_pending_line) next_line = args.ctm_edits_in.readline() split_pending_line = next_line.split() if len(split_pending_line) == 0: if next_line != '': sys.exit("segment_ctm_edits.py: got an " "empty or whitespace input line") except Exception: _global_logger.error( "Error with utterance %s", cur_utterance) raise def read_non_scored_words(non_scored_words_file): for line in non_scored_words_file.readlines(): parts = line.split() if not len(parts) == 1: raise RuntimeError( "segment_ctm_edits.py: bad line in non-scored-words " "file {0}: {1}".format(non_scored_words_file, line)) _global_non_scored_words.add(parts[0]) non_scored_words_file.close() class UtteranceStats(object): def __init__(self): # segment_total_length and num_segments are maps from # 'stage' strings; see accumulate_segment_stats for details. self.segment_total_length = defaultdict(int) self.num_segments = defaultdict(int) # the lambda expression below is an anonymous function that takes no # arguments and returns the new list [0, 0]. self.num_utterances = 0 self.num_utterances_without_segments = 0 self.total_length_of_utterances = 0 def accumulate_segment_stats(self, segment_list, text): """ Here, 'text' will be something that indicates the stage of processing, e.g. 'Stage 0: segment cores', 'Stage 1: add tainted lines', etc. """ for segment in segment_list: self.num_segments[text] += 1 self.segment_total_length[text] += segment.length() def print_segment_stats(self): _global_logger.info( """Number of utterances is %d, of which %.2f%% had no segments after all processing; total length of data in original utterances (in seconds) was %d""", self.num_utterances, (self.num_utterances_without_segments * 100.0 / self.num_utterances), self.total_length_of_utterances) keys = sorted(self.segment_total_length.keys()) for i, key in enumerate(keys): if i > 0: delta_percentage = '[%+.2f%%]' % ( (self.segment_total_length[key] - self.segment_total_length[keys[i - 1]]) * 100.0 / self.total_length_of_utterances) _global_logger.info( 'At %s, num-segments is %d, total length %.2f%% of ' 'original total %s', key, self.num_segments[key], (self.segment_total_length[key] * 100.0 / self.total_length_of_utterances), delta_percentage if i > 0 else '') def main(): args = get_args() try: global _global_non_scored_words _global_non_scored_words = set() read_non_scored_words(args.non_scored_words_in) oov_symbol = None if args.oov_symbol_file is not None: try: line = args.oov_symbol_file.readline() assert len(line.split()) == 1 oov_symbol = line.split()[0] assert args.oov_symbol_file.readline() == '' args.oov_symbol_file.close() except Exception: _global_logger.error("error reading file " "--oov-symbol-file=%s", args.oov_symbol_file.name) raise elif args.unk_padding != 0.0: raise ValueError( "if the --unk-padding option is nonzero (which " "it is by default, " "the --oov-symbol-file option must be supplied.") utterance_stats = UtteranceStats() word_stats = WordStats() process_data(args, oov_symbol=oov_symbol, utterance_stats=utterance_stats, word_stats=word_stats) try: args.text_out.close() args.segments_out.close() if args.ctm_edits_out is not None: args.ctm_edits_out.close() except: _global_logger.error("error closing one or more outputs " "(broken pipe or full disk?)") raise utterance_stats.print_segment_stats() if args.word_stats_out is not None: word_stats.print(args.word_stats_out) if args.ctm_edits_out is not None: _global_logger.info("detailed utterance-level debug information " "is in %s", args.ctm_edits_out.name) except: _global_logger.error("Failed segmenting CTM edits") raise finally: try: args.text_out.close() args.segments_out.close() if args.ctm_edits_out is not None: args.ctm_edits_out.close() except: _global_logger.error("error closing one or more outputs " "(broken pipe or full disk?)") raise if __name__ == '__main__': main() |