Blame view

egs/wsj/s5/steps/cleanup/internal/tf_idf.py 15.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  # Copyright 2016    Vimal Manohar
  # Apache 2.0.
  
  """This module contains structures to accumulate, store and use stats
  for Term-frequency and Inverse-document-frequency values.
  """
  
  from __future__ import print_function
  from __future__ import division
  import logging
  import math
  import re
  import sys
  
  sys.path.insert(0, 'steps')
  
  logger = logging.getLogger('__name__')
  logger.addHandler(logging.NullHandler())
  
  
  class IDFStats(object):
      """Stores stats for computing inverse-document-frequencies.
      """
      def __init__(self):
          self.num_docs_for_term = {}
          self.num_docs = 0
  
      def get_inverse_document_frequency(self, term, weighting_scheme="log"):
          """Get IDF for a term.
  
          Weighting scheme is the function applied on the raw
          inverse-document frequencies n(t) = |d in D: t in d|
          when computing idf(t,d).
          Let N = Total number of documents.
  
          IDF weighting schemes:-
          unary  : idf(t,D) = 1
          log    : idf(t,D) = log (N / (1 + n(t)))
          log-smoothed : idf(t,D) = log(1 + N / n(t))
          probabilistic: idf(t,D) = log((N - n(t)) / n(t))
          """
          n_t = float(self.num_docs_for_term.get(term, 0))
          num_terms = len(self.num_docs_for_term)
  
          if num_terms == 0:
              raise RuntimeError("No IDF stats have been accumulated.")
  
          if weighting_scheme == "unary":
              return 1
          if weighting_scheme == "log":
              return math.log(float(self.num_docs) / (1.0 + n_t))
          if weighting_scheme == "log-smoothed":
              return math.log(1.0 + float(self.num_docs) / (1.0 + n_t))
          if weighting_scheme == "probabilitic":
              return math.log((self.num_docs - n_t - 1) / (1.0 + n_t))
  
      def accumulate(self, term):
          """Adds one count to the number of docs containing the term "term".
          """
          self.num_docs_for_term[term] = self.num_docs_for_term.get(term, 0) + 1
          if len(term) == 1:
              self.num_docs += 1
  
      def write(self, file_handle):
          """Writes the IDF stats to file using the format:
          <term-1> <term-2> ... <term-N> <num-docs>
          for n-gram (<term-1>, ... <term-N>)
          """
          for term, num in self.num_docs_for_term.items():
              if num == 0:
                  continue
              assert isinstance(term, tuple)
              print ("{term} {n}".format(term=" ".join(term), n=num),
                     file=file_handle)
  
      def read(self, file_handle):
          """Loads IDF stats from file. """
          for line in file_handle:
              parts = line.strip().split()
              term = tuple(parts[0:-1])
              self.num_docs_for_term[term] = float(parts[-1])
              if len(term) == 1:
                  self.num_docs += 1
  
          if len(self.num_docs_for_term) == 0:
              raise RuntimeError("Read no IDF stats.")
  
  
  class TFStats(object):
      """Store stats for TF-IDF computation.
      A separate object of IDFStats is stored within this object.
      """
      def __init__(self):
          self.raw_counts = {}
          self.max_counts_for_term = {}
  
      def get_term_frequency(self, term, doc, weighting_scheme="raw",
                             normalization_factor=0.5):
          """Returns the term-frequency for (term, document) pair.
  
          The function applied on the raw term-frequencies f(t,d) when computing
          tf(t,d) is specified by the weighting_scheme.
          binary : tf(t,d) = 1 if t in d else 0
          raw    : tf(t,d) = f(t,d)
          log    : tf(t,d) = 1 + log(f(t,d))
          normalized : tf(t,d) = K + (1-K) * f(t,d) / max{f(t',d): t' in d}
          """
          if weighting_scheme == "binary":
              return 1 if (term, doc) in self.raw_counts else 0
          if weighting_scheme == "raw":
              return self.raw_counts.get((term, doc), 0)
          if weighting_scheme == "log":
              if (term, doc) in self.raw_counts:
                  return 1 + math.log(self.raw_counts[(term, doc)])
              return 0
          if weighting_scheme == "normalized":
              return (normalization_factor
                      + (1 - normalization_factor)
                      * self.raw_counts.get((term, doc), 0)
                      / (1.0 + self.max_counts_for_term.get(term, 0)))
          raise KeyError("Unknown tf-weighting-scheme {0}".format(
              weighting_scheme))
  
      def accumulate(self, doc, text, ngram_order):
          """Accumulate raw stats from a document for upto the specified
          ngram-order."""
          for n in range(1, ngram_order + 1):
              for i in range(len(text)):
                  term = tuple(text[i:(i+n)])
                  self.raw_counts.setdefault((term, doc), 0)
                  self.raw_counts[(term, doc)] += 1
  
      def compute_term_stats(self, idf_stats=None):
          """Compute the maximum counts for each term over all the documents
          based on the stored raw counts."""
          if len(self.raw_counts) == 0:
              raise RuntimeError("No (term, doc) found in tf-stats.")
          for tup, counts in self.raw_counts.items():
              term = tup[0]
  
              if counts > self.max_counts_for_term.get(term, 0):
                  self.max_counts_for_term[term] = counts
  
              if idf_stats is not None:
                  idf_stats.accumulate(term)
  
      def __str__(self):
          """Returns a string with all the stats in the following format:
          <n-gram order> <term-1> <term-2> ... <term-n> <document-id> <counts>
          """
          lines = []
          for tup, counts in self.raw_counts.items():
              term, doc = tup
              lines.append("{order} {term} {doc} {counts}".format(
                  order=len(term), term=" ".join(term),
                  doc=doc, counts=counts))
          return "
  ".join(lines)
  
      def read(self, file_handle, ngram_order=None, idf_stats=None):
          """Reads the TF stats stored in a file in the following format:
          <ngram-order> <term-1> <term-2> ... <term-n> <document-id> <counts>
  
          If idf_stats is provided then idf_stats is accumulated simultaneously.
          """
          for line in file_handle:
              parts = line.strip().split()
              order = parts[0]
              assert len(parts) - 3 == order
              if ngram_order is not None and order > ngram_order:
                  continue
              term = tuple(parts[1:(order+1)])
              doc = parts[-2]
              counts = float(parts[-1])
  
              self.raw_counts[(term, doc)] = counts
  
              if counts > self.max_counts_for_term.get(term, 0):
                  self.max_counts_for_term[term] = counts
  
              if idf_stats is not None:
                  idf_stats.accumulate(term)
  
          if len(self.raw_counts) == 0:
              raise RuntimeError("Read no TF stats.")
  
  
  class TFIDF(object):
      """Class to store TF-IDF values for term-document pairs.
  
      Parameters:
          tf_idf - A dictionary of TF-IDF values indexed by (term, document)
                   tuple as key
      """
  
      def __init__(self):
          self.tf_idf = {}
  
      def get_value(self, term, doc):
          """Returns TF-IDF value for (term, doc) tuple if it exists.
          Otherwise returns 0.
          """
          return self.tf_idf[(term, doc)]
  
      def compute_similarity_scores(self, source_tfidf, source_docs=None,
                                    do_length_normalization=False,
                                    query_id=None):
          """Computes TF-IDF similarity score between each pair of query
          document contained in this object and the source documents
          in the source_tfidf object.
  
          Arguments:
              source_docs - If provided, the similarity scores are computed
                            for only the source documents contained in
                            source_docs.
              use_average - If True, then the similarity scores is
                            normalized by the length of query. This is usually
                            not required when the scores are only utilized
                            for ranking the source documents.
              query_id - If provided, check that this tf_idf object
                         contains values only for document with id 'query_id'
  
          Returns a dictionary
              { (query_document_id, source_document_id): similarity_score }
          """
          num_terms_per_doc = {}
          similarity_scores = {}
  
          for tup, value in self.tf_idf.items():
              term, doc = tup
              num_terms_per_doc[doc] = num_terms_per_doc.get(doc, 0) + 1
  
              if query_id is not None and doc != query_id:
                  raise RuntimeError("TF-IDF contains document {0}, which is "
                                     "not the required query {1}. 
  "
                                     "Something wrong in how this TF-IDF object "
                                     "was created or a bug in the "
                                     "calling script.".format(
                                         doc, query_id))
  
              if source_docs is not None:
                  for src_doc in source_docs:
                      try:
                          src_value = source_tfidf.get_value(term, src_doc)
                      except KeyError:
                          logger.debug(
                              "Could not find ({term}, {src}) in "
                              "source_tfidf. "
                              "Choosing a tf-idf value of 0.".format(
                                  term=term, src=src_doc))
                          src_value = 0
  
                      similarity_scores[(doc, src_doc)] = (
                          similarity_scores.get((doc, src_doc), 0)
                          + src_value * value)
              else:
                  for src_tup, src_value in source_tfidf.tf_idf.items():
                      similarity_scores[(doc, src_doc)] = (
                          similarity_scores.get((doc, src_doc), 0)
                          + src_value * value)
  
          if do_length_normalization:
              for doc_pair, value in similarity_scores.items():
                  doc, src_doc = doc_pair
                  similarity_scores[(doc, src_doc)] = value / num_terms_per_doc[doc]
  
          if logger.isEnabledFor(logging.DEBUG):
              for doc, count in num_terms_per_doc.items():
                  logger.debug(
                      'Seen {0} terms in query document {1}'.format(count, doc))
  
          return similarity_scores
  
      def read(self, tf_idf_file):
          """Loads TFIDF object from file."""
  
          if len(self.tf_idf) != 0:
              raise RuntimeError("TD-IDF object is not empty.")
          seen_footer = False
          line = tf_idf_file.readline()
          parts = line.strip().split()
          if re.search('^<TFIDF>', line) is None:
              raise TypeError(
                  "Invalid format of TD-IDF object. "
                  "Missing header <TFIDF>; got {0}".format(line))
          assert parts[0] == "<TFIDF>"
          if len(parts) > 1:
              # Read header; go to the rest of line
              line = " ".join(parts[1:])
          else:
              # Nothing in this line. Read the next lines.
              line = tf_idf_file.readline()
          while line:
              parts = line.strip().split()
              if re.search('</TFIDF>', line):
                  if len(parts) > 1:
                      raise TypeError(
                          "Expecting footer </TFIDF> "
                          "to be on a separate line; got {0}".format(line))
                  assert parts[0] == "</TFIDF>"
                  seen_footer = True
                  break
              if re.search('<TFIDF>', line):
                  raise TypeError("Got unexpected header <TFIDF> in line "
                                  "{0}".format(line))
  
              order = int(parts[0])
              term = tuple(parts[1:(order + 1)])
              doc = parts[-2]
              tfidf = float(parts[-1])
  
              entry = (term, doc)
              if entry in self.tf_idf:
                  raise RuntimeError("Duplicate entry {0} found while reading "
                                     "TFIDF object.".format(entry))
              self.tf_idf[entry] = tfidf
  
              line = tf_idf_file.readline()
          if not seen_footer:
              raise TypeError(
                  "Did not see footer </TFIDF> "
                  "in TFIDF object; got {0}".format(line))
  
          if len(self.tf_idf) == 0:
              raise RuntimeError(
                  "Read no TF-IDF values from file {0}".format(tf_idf_file.name))
  
      def write(self, tf_idf_file):
          """Writes TFIDF object to file."""
  
          print ("<TFIDF>", file=tf_idf_file)
          for tup, value in self.tf_idf.items():
              term, doc = tup
              print("{order} {term} {doc} {tfidf}".format(
                  order=len(term), term=" ".join(term),
                  doc=doc, tfidf=value),
                    file=tf_idf_file)
          print ("</TFIDF>", file=tf_idf_file)
  
  
  def write_tfidf_from_stats(
          tf_stats, idf_stats, tf_idf_file, tf_weighting_scheme="raw",
          idf_weighting_scheme="log", tf_normalization_factor=0.5,
          expected_document_id=None):
      """Writes TF-IDF values to file args.tf_idf_file.
      The format used is
      <ngram-order> <term> <document> <tfidf>.
      Markers "<TFIDF>" and "</TFIDF>" are added for parsing this file
      easily.
  
      Arguments:
          tf_stats - A TFStats object
          idf_stats - An IDFStats object
          tf_idf_file - Output file to which the TF-IDF values will be written
          tf_weighting_scheme - See doc_string in TFStats class
          idf_weighting_scheme - See doc_string in IDFStats class
          tf_normalization_factor - See doc_string in TFStats class
          document_id - If provided, checks that the TFStats object contains
                        stats only for this document_id.
      """
      if len(tf_stats.raw_counts) == 0:
          raise RuntimeError("Supplied tf-stats object is empty.")
  
      if idf_stats.num_docs == 0:
          raise RuntimeError("Supplied idf-stats object is empty.")
  
      print ("<TFIDF>", file=tf_idf_file)
      for tup in tf_stats.raw_counts:
          term, doc = tup
  
          if expected_document_id is not None and doc != expected_document_id:
              raise RuntimeError("TFStats object contains stats with "
                                 "document {0}, "
                                 "which is not the specified "
                                 "document {1}.".format(doc,
                                                        expected_document_id))
  
          tf_value = tf_stats.get_term_frequency(
              term, doc,
              weighting_scheme=tf_weighting_scheme,
              normalization_factor=tf_normalization_factor)
  
          idf_value = idf_stats.get_inverse_document_frequency(
              term, weighting_scheme=idf_weighting_scheme)
  
          print("{order} {term} {doc} {tfidf}".format(
              order=len(term), term=" ".join(term),
              doc=doc, tfidf=tf_value * idf_value),
                file=tf_idf_file)
      print ("</TFIDF>", file=tf_idf_file)
  
  
  def read_key(fd):
    """ [str] = read_key(fd)
     Read the utterance-key from the opened ark/stream descriptor 'fd'.
    """
    str = ''
    while 1:
      char = fd.read(1)
      if char == '' : break
      if char == ' ' : break
      str += char
    str = str.strip()
    if str == '': return None # end of file,
    return str
  
  
  def read_tfidf_ark(file_handle):
      """Read a kaldi archive of TFIDF objects indexed by a key (document-id).
      <document-id1> <tf-idf-object1>
      <document-id2> <tf-idf-object2>
      ...
      """
      try:
          key = read_key(file_handle)
          while key:
              tf_idf = TFIDF()
              try:
                  tf_idf.read(file_handle)
              except RuntimeError:
                  raise
              yield key, tf_idf
              key = read_key(file_handle)
      finally:
          file_handle.close()