Blame view

egs/wsj/s5/steps/conf/apply_calibration.sh 2.91 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  #!/bin/bash
  # Copyright 2015, Brno University of Technology (Author: Karel Vesely). Apache 2.0.
  
  # Trains logistic regression, which calibrates the per-word confidences,
  # which are extracted by the Minimum Bayes Risk decoding.
  
  # begin configuration section.
  cmd=
  stage=0
  # end configuration section.
  
  [ -f ./path.sh ] && . ./path.sh
  . parse_options.sh || exit 1;
  
  if [ $# -ne 5 ]; then
    echo "Usage: $0 [opts] <data-dir> <lang-dir|graph-dir> <decode-dir> <calibration-dir> <output-dir>"
    echo " Options:"
    echo "    --cmd (run.pl|queue.pl...)      # specify how to run the sub-processes."
    exit 1;
  fi
  
  set -euo pipefail
  
  data=$1
  lang=$2 # Note: may be graph directory not lang directory, but has the necessary stuff copied.
  latdir=$3
  caldir=$4
  dir=$5
  
  model=$latdir/../final.mdl # assume model one level up from decoding dir.
  calibration=$caldir/calibration.mdl
  word_feats=$caldir/word_feats
  word_categories=$caldir/word_categories
  
  for f in $lang/words.txt $word_feats $word_categories $latdir/lat.1.gz $calibration $model; do
    [ ! -f $f ] && echo "$0: Missing file $f" && exit 1
  done
  [ -z "$cmd" ] && echo "$0: Missing --cmd '...'" && exit 1
  
  [ -d $dir/log ] || mkdir -p $dir/log
  nj=$(cat $latdir/num_jobs)
  lmwt=$(cat $caldir/lmwt)
  decode_mbr=$(cat $caldir/decode_mbr)
  
  # Store the setup,
  echo $lmwt >$dir/lmwt
  echo $decode_mbr >$dir/decode_mbr 
  cp $calibration $dir/calibration.mdl
  cp $word_feats $dir/word_feats
  cp $word_categories $dir/word_categories
  
  # Create the ctm with raw confidences,
  # - we keep the timing relative to the utterance,
  if [ $stage -le 0 ]; then
    $cmd JOB=1:$nj $dir/log/get_ctm.JOB.log \
      lattice-scale --inv-acoustic-scale=$lmwt "ark:gunzip -c $latdir/lat.JOB.gz|" ark:- \| \
      lattice-limit-depth ark:- ark:- \| \
      lattice-push --push-strings=false ark:- ark:- \| \
      lattice-align-words-lexicon --max-expand=10.0 \
       $lang/phones/align_lexicon.int $model ark:- ark:- \| \
      lattice-to-ctm-conf --decode-mbr=$decode_mbr ark:- - \| \
      utils/int2sym.pl -f 5 $lang/words.txt \
      '>' $dir/JOB.ctm
    # Merge and clean,
    for ((n=1; n<=nj; n++)); do cat $dir/${n}.ctm; done > $dir/ctm
    rm $dir/*.ctm
    cat $dir/ctm | utils/sym2int.pl -f 5 $lang/words.txt >$dir/ctm_int
  fi
  
  # Compute lattice-depth,
  latdepth=$dir/lattice_frame_depth.ark
  if [ $stage -le 1 ]; then
    [ -e $latdepth ] || steps/conf/lattice_depth_per_frame.sh --cmd "$cmd" $latdir $dir
  fi
  
  # Create the forwarding data for logistic regression,
  if [ $stage -le 2 ]; then
    steps/conf/prepare_calibration_data.py --conf-feats $dir/forward_feats.ark \
      --lattice-depth $latdepth $dir/ctm_int $word_feats $word_categories
  fi
  
  # Apply calibration model to dev,
  if [ $stage -le 3 ]; then
    logistic-regression-eval --apply-log=false $calibration \
      ark:$dir/forward_feats.ark ark,t:- | \
      awk '{ key=$1; p_corr=$4; sub(/,.*/,"",key); gsub(/\^/," ",key); print key,p_corr }' | \
      utils/int2sym.pl -f 5 $lang/words.txt \
      >$dir/ctm_calibrated
  fi
  
  exit 0